[Report]Credit Card

Author

SEOYEON CHOI

Published

December 1, 2024

kaggle

- 맥락

- 내용

-권장 사항


# 한글 폰트를 사용하기 위해 필요한 코드입니다.
import matplotlib.font_manager as fm

# 'NotoSansKR-Regular.otf' 파일을 사용하여 한글 폰트를 지정하고, 폰트 매니저에 추가합니다.
fe = fm.FontEntry(fname='NotoSansKR-Regular.otf', name='NotoSansKR')
fm.fontManager.ttflist.insert(0, fe)
plt.rc('font', family='NotoSansKR')

Import

import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('../../../../delete_/creditcard.csv', encoding='cp949')
df
Time V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V21 V22 V23 V24 V25 V26 V27 V28 Amount Class
0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 ... -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62 0
1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 0.085102 -0.255425 ... -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2.69 0
2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 ... 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0
3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 ... -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50 0
4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739 ... -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 69.99 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
284802 172786.0 -11.881118 10.071785 -9.834783 -2.066656 -5.364473 -2.606837 -4.918215 7.305334 1.914428 ... 0.213454 0.111864 1.014480 -0.509348 1.436807 0.250034 0.943651 0.823731 0.77 0
284803 172787.0 -0.732789 -0.055080 2.035030 -0.738589 0.868229 1.058415 0.024330 0.294869 0.584800 ... 0.214205 0.924384 0.012463 -1.016226 -0.606624 -0.395255 0.068472 -0.053527 24.79 0
284804 172788.0 1.919565 -0.301254 -3.249640 -0.557828 2.630515 3.031260 -0.296827 0.708417 0.432454 ... 0.232045 0.578229 -0.037501 0.640134 0.265745 -0.087371 0.004455 -0.026561 67.88 0
284805 172788.0 -0.240440 0.530483 0.702510 0.689799 -0.377961 0.623708 -0.686180 0.679145 0.392087 ... 0.265245 0.800049 -0.163298 0.123205 -0.569159 0.546668 0.108821 0.104533 10.00 0
284806 172792.0 -0.533413 -0.189733 0.703337 -0.506271 -0.012546 -0.649617 1.577006 -0.414650 0.486180 ... 0.261057 0.643078 0.376777 0.008797 -0.473649 -0.818267 -0.002415 0.013649 217.00 0

284807 rows × 31 columns

plt.plot(df.Amount,'.')
plt.plot(df.Class,'.')

df.Class.value_counts()
0    284315
1       492
Name: Class, dtype: int64
df[df.Class==1]
Time V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V21 V22 V23 V24 V25 V26 V27 V28 Amount Class
541 406.0 -2.312227 1.951992 -1.609851 3.997906 -0.522188 -1.426545 -2.537387 1.391657 -2.770089 ... 0.517232 -0.035049 -0.465211 0.320198 0.044519 0.177840 0.261145 -0.143276 0.00 1
623 472.0 -3.043541 -3.157307 1.088463 2.288644 1.359805 -1.064823 0.325574 -0.067794 -0.270953 ... 0.661696 0.435477 1.375966 -0.293803 0.279798 -0.145362 -0.252773 0.035764 529.00 1
4920 4462.0 -2.303350 1.759247 -0.359745 2.330243 -0.821628 -0.075788 0.562320 -0.399147 -0.238253 ... -0.294166 -0.932391 0.172726 -0.087330 -0.156114 -0.542628 0.039566 -0.153029 239.93 1
6108 6986.0 -4.397974 1.358367 -2.592844 2.679787 -1.128131 -1.706536 -3.496197 -0.248778 -0.247768 ... 0.573574 0.176968 -0.436207 -0.053502 0.252405 -0.657488 -0.827136 0.849573 59.00 1
6329 7519.0 1.234235 3.019740 -4.304597 4.732795 3.624201 -1.357746 1.713445 -0.496358 -1.282858 ... -0.379068 -0.704181 -0.656805 -1.632653 1.488901 0.566797 -0.010016 0.146793 1.00 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
279863 169142.0 -1.927883 1.125653 -4.518331 1.749293 -1.566487 -2.010494 -0.882850 0.697211 -2.064945 ... 0.778584 -0.319189 0.639419 -0.294885 0.537503 0.788395 0.292680 0.147968 390.00 1
280143 169347.0 1.378559 1.289381 -5.004247 1.411850 0.442581 -1.326536 -1.413170 0.248525 -1.127396 ... 0.370612 0.028234 -0.145640 -0.081049 0.521875 0.739467 0.389152 0.186637 0.76 1
280149 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346 -2.234739 1.210158 -0.652250 ... 0.751826 0.834108 0.190944 0.032070 -0.739695 0.471111 0.385107 0.194361 77.89 1
281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548 -2.208002 1.058733 -1.632333 ... 0.583276 -0.269209 -0.456108 -0.183659 -0.328168 0.606116 0.884876 -0.253700 245.00 1
281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695 0.223050 -0.068384 0.577829 ... -0.164350 -0.295135 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309 42.53 1

492 rows × 31 columns