[Linear Algebra] Lecture 8

Author

SEOYEON CHOI

Published

February 29, 2024

학습 목표

If some combination of the left side gives all \(0\)s, then the same combination of the right-hand side must give \(0\)s.

\(A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}\)

\(x_1 + 2x_2 + 2x_3 + 2x_4 = b_1\)

\(2x_1 + 4x_2 + 6x_3 + 8x_4 = b_2\)

\(3x_1 + 6x_2 + 8x_3 + 10x_4 = b_3\)

\(\begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 2 & 4 & 6 & 8 & b_2 \\ 3 & 6 & 8 & 10 & b_3\end{bmatrix}\) = \(\begin{bmatrix} A b \end{bmatrix}\), Augmented matrix1

  • 1 확대행렬

  • Augmented matrix

    Augmented matrix; 확대행렬, 계수 행렬과 상수 행렬을 붙인 행렬

    1. \(R_{ij}\) - i행과 j 행 교환
    2. \(R_i(c)\) - i행에 0이 아닌 상수 c 곱
    3. \(R_{ij}(c)\) - i행에 0이 아닌 상수 c 곱하여 j행에 합

    Elimination with the first column completed

    \(\begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 2 & 4 & b_3 - 3b_1 \end{bmatrix}\)

    \(\begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}\)

    Suppose \(b = \begin{bmatrix} b_1 = 1 \\ b_2 = 5 \\ b_3 = 6 \end{bmatrix}\)

    \(\begin{bmatrix} 1 & 2 & 2 & 2 & 1 \\ 0 & 0 & 2 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}\)

    solution condition on \(b\)

    \(Ax=b\) solvable when \(b\) is in \(C(A)\).

    If combination of rows of A gives zero row, then the same combination of entries of \(b\) must give \(0\).

    To find complete solution to \(Ax = b\),

    1. \(X_{particular}\)

  • 2 free variables는 아무 값 넣을 수 있으니 가능한 조건

  • 2. \(X_{nullspace}\) \(\to\) 7강에서 진행한 내용

    1 + 2 \(\to\) \(X = X_p + X_n\)

    If I have one solution, I can add any space from nullspace

    all combination of the special solution

    \(X_{complete}\) = \(\begin{bmatrix} -2 \\ 0 \\ \frac{3}{2} \\ 0 \end{bmatrix}\) + \(c_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}\) + \(c_2 \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1\end{bmatrix}\)3

  • 3 nullspace에 대해 we can say 2 dimensional subspace.

  • 4 4 = the number of unknown variables

  • plot all solutions \(X\) \(m\) \(\mathbb{R}^4\)4

    \(m\) by \(n\) matrix \(A\) of rank \(R\)5(know \(r \le m, r \le n\)))

  • 5 The definition is the number of pivot.

  • - Full column rank means \(r=n\)

  • 6 only one

  • - \(A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 6 & 1 \\ 5 & 1 \end{bmatrix}\), \(R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}\)

    Full row rank means \(r=m\)

    I can solve \(Ax = b\) for every \(b\)(each right-hand side)

    Left with \(n-r\) = \(n-m\) free variables

    \(A = \begin{bmatrix} 1 & 2 & 6 & 5 \\ 3 & 1 & 1 & 1 \end{bmatrix}\)7, \(R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}\)

  • 7 위에서 transpose 한 거

  • - \(\mathbb{r} = m = n\) \(\to\) invertible matrix.

    \(A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}\), \(R = I\)


    1 \(r=m=n\)

    2 \(r = n<m\)

    3 \(r = m<n\), extra rows

    4 \(r<m, r<n\)

    The rank tells you everything about the number of solutions.

    The number of rank is all the informtion except the exact entries in the solutions for that you goes to the matrix.