학습 목표
- Linear Independence
- Spanning a Space
- Basis and demension
Suppose \(A\) is \(m\) by \(n\) with \(m<n\).
Then there are nonzero solutions to \(Ax= 0\) (more unknown variables than equations)
- Reason: There will be free variables!
ex) 2 by 3 matrix \(\begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix}\)
- unknown variables = 3, equations = 2
-
Independence
Vectors \(x_1,x_2, \dots x_n\) are independent if no combination gives zero vector \(c_1 x_1 + c_2x_2 + \dots + c_n x_n \ne 0\) (except the zero combination, all \(c_i = 0\))
ex) \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\) \(v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}\)라면,
- \(v_2 = 2 v_1\), dependent(double)
- \(\therefore 2v_1 - v_2 = 0\)
ex) \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\), \(v_2 = 0\) 이라면,
- dependent, 0 이 속해 있으니까
- \(0 v_1 + 6 v_2 = 0\)
ex) \(A = \begin{bmatrix} 2 & 1 & 2.5 \\ 1 & 2 & -1 \end{bmatrix}\) \(\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0\end{bmatrix}\)
- 이게 성립할 수 있다면 dependent임
Repeat when \(v_1, \dots v_n\) are columns of \(A\).
They are independent if nullspace of \(A\) is zero vector : rank = \(n\).
- independent : \(N(A) = \{ 0 \}\), no free variables
They are dependent if \(Ac=0\) for some nonzero \(c\).
- that is, rank \(<n\)(pivot 도 \(<n\))
- 왜냐하면 combination of columns 가 zero column이라서.
- free variables 도 있다.(free variable = n-r 임. r은 rank를 의미하고.)
-
Spanning a Space
Vectors \(v_1, \dots , v_n\) span a space means: The space consists of all combinations of those vectors.
- vector들이 space를 span한다? : 공간이 그 벡터들의 모든 조합으로 구성되어 있다.
Basics for a space is a sequence of vectors \(v_1, v_2, \dots , v_l\) with 2 properties.
- They are independent.
- They span the space.
Example:
Space is \(\mathbb{R}^3\)
One basis is \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\) \(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\) \(\begin{bmatrix} 0 \\ 0 \\ 1\end{bmatrix}\)
Another basis is \(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\) \(\begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}\) \(\begin{bmatrix} 3 \\ 3 \\ 8 \end{bmatrix}\)
\(n\) vectors gives basis if the \(n \times n\) matrix with those columns is invertible.
Another basis \(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\) \(\begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}\)
Given a space: columns
Every basis for the space have the same number of vectors
\(\to\) Definition: the dimension of the space
- = the number of baasis
- = the number of vectors
Space is \(C(A)\) = \(\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}\)
- We can put the basis on 1,2 columns.
- We can’t put the basis on 3,4 columns.
- That is, Rank \(= 2\)
\(N(A)\) \(\to\) \(\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}\), \(\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1\end{bmatrix}\)
1 The number of
2 Column Space
dimension, column space알면 basis 알 수 있음?
- dimension 수랑 basis 수랑 같다고 했잖아
dim \(C(A)=r\)
Do these two special solutions form a basis for the null space?
= Does the null space consist of all combinations of those the guys?
- Yes!
The null space is two dimensions.
The dimension of null space is the number of free variables.
dim\(N(A)\) = # free variables = \(n-r\)