[Linear Algebra] Lecture 9

Author

SEOYEON CHOI

Published

March 3, 2024

학습 목표

Suppose \(A\) is \(m\) by \(n\) with \(m<n\).

Then there are nonzero solutions to \(Ax= 0\) (more unknown variables than equations)

ex) 2 by 3 matrix \(\begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix}\)

- Independence

Vectors \(x_1,x_2, \dots x_n\) are independent if no combination gives zero vector \(c_1 x_1 + c_2x_2 + \dots + c_n x_n \ne 0\) (except the zero combination, all \(c_i = 0\))

ex) \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\) \(v_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}\)라면,

ex) \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\), \(v_2 = 0\) 이라면,

ex) \(A = \begin{bmatrix} 2 & 1 & 2.5 \\ 1 & 2 & -1 \end{bmatrix}\) \(\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0\end{bmatrix}\)

Repeat when \(v_1, \dots v_n\) are columns of \(A\).

They are independent if nullspace of \(A\) is zero vector : rank = \(n\).

They are dependent if \(Ac=0\) for some nonzero \(c\).

- Spanning a Space

Vectors \(v_1, \dots , v_n\) span a space means: The space consists of all combinations of those vectors.

Basics for a space is a sequence of vectors \(v_1, v_2, \dots , v_l\) with 2 properties.

  1. They are independent.
  2. They span the space.

Example:

Space is \(\mathbb{R}^3\)

One basis is \(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}\) \(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}\) \(\begin{bmatrix} 0 \\ 0 \\ 1\end{bmatrix}\)

Another basis is \(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\) \(\begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}\) \(\begin{bmatrix} 3 \\ 3 \\ 8 \end{bmatrix}\)

\(n\) vectors gives basis if the \(n \times n\) matrix with those columns is invertible.

Another basis \(\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}\) \(\begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}\)

Given a space: columns

Every basis for the space have the same number of vectors

\(\to\) Definition: the dimension of the space

Space is \(C(A)\) = \(\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix}\)

\(N(A)\) \(\to\) \(\begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}\), \(\begin{bmatrix} -1 \\ 0 \\ 0 \\ 1\end{bmatrix}\)

  • 1 The number of

  • 2 Column Space

  • dimension, column space알면 basis 알 수 있음?

    dim \(C(A)=r\)

    Do these two special solutions form a basis for the null space?

    = Does the null space consist of all combinations of those the guys?

    The null space is two dimensions.

    The dimension of null space is the number of free variables.

    dim\(N(A)\) = # free variables = \(n-r\)