[Linear Algebra] Lecture 18

Author

SEOYEON CHOI

Published

April 27, 2024

학습목표

\(det\) \(\begin{vmatrix} a& b \\ c & d\end{vmatrix} = ad-bc\)

determinent의 특징

1 \(det\) \(I=1\)

\(\begin{vmatrix} 1& 0 \\ 0 & 1\end{vmatrix} = 1\)

2 Exchange rows: reverse sighn of \(det\)

\(det\) \(p = \begin{cases} 1 & \text{even} \\ -1 & \text{odd} \end{cases}\)

\(\begin{vmatrix} 0& 1 \\ 1 & 0\end{vmatrix} = -1\)

3a \(\begin{vmatrix} ta& tb \\ c & d\end{vmatrix} = t \begin{vmatrix} a& b \\ c & d\end{vmatrix}\)

3b \(\begin{vmatrix} a + a^{'} & b + b^{'} \\ c & d\end{vmatrix} = \begin{vmatrix} a & b \\ c & d\end{vmatrix} + \begin{vmatrix} a^{'} & b^{'} \\ c & d\end{vmatrix}\)

Linear each row

단, \(det\) \((A+B) \ne\) \(det\) \(A\) + \(det\) \(B\)

4 \(2\) equal rows \(\to\) \(det\) \(=0\)

Exchange the rows \(\to\) same matrix

\(A = \begin{vmatrix}a & b \\ a&b \end{vmatrix}\) 일 때, \(det\) \(A = ab-ab = 0\)

5 subtract \(l\) \(\times\) row \(i\) from row \(k\)

\(det\) dosen’t change

\(\begin{vmatrix} a & b \\ c -la & d-lb \end{vmatrix} = \begin{vmatrix} a & b \\ c & d\end{vmatrix} + \begin{vmatrix} a & b \\ -la & -lb \end{vmatrix}\)

or \(= \begin{vmatrix} a & b \\ c & d\end{vmatrix} - l \begin{vmatrix} a & b \\ c & d\end{vmatrix}\) by 3

소거과정 거쳐도 \(det\)는 변하지 않음

6 Row of zeros \(\to\) \(det\) \(A = 0\)

\(5 \begin{vmatrix} 0 & 0 \\ c & d\end{vmatrix} = \begin{vmatrix} 5 \times 0 & 5 \times 0 \\ c & d\end{vmatrix}\)

7 \(det\) \(U = \begin{vmatrix} d_1 & * & * & * \\ 0 & d_2 & * & * \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & d_N\end{vmatrix} = (d_1)(d_2)\cdots (d_N)\)

product of pivots

\(det\) \(D= d_n \cdots d_2d_1\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 1\end{vmatrix} = d_n \cdots d_2d_1\)

8 \(det\) \(A=0\)

When \(A\) is singular \(\to\) rows of zeros

\(det\) \(A \ne 0\) \(\to\) \(U\)

When \(A\) is invertible \(\to\) \(d_1,d_2,,\cdots,d_n\)

\(\begin{vmatrix}a & b \\ c&d \end{vmatrix} \to \begin{vmatrix} a & b \\ 0 & d - \frac{c}{d} b\end{vmatrix} = ad-bc\)

9 \(det\) \(AB =\) ( \(det\) \(A\) ) (\(det\) \(B\) )

\(det\) \(A^{-1} = \frac{1}{det A}\)

\(A^{-1} A = I\)

A 의 역행렬의 determinant는 A의 determinant의 역수

(\(det\) \(A^{-1}\) ) ( \(det\) \(A\) ) = 1

\(A = \begin{bmatrix} 2 & 0 \\ 0 & 3\end{bmatrix}\)

\(A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3}\end{bmatrix}\)

\(det\) \(A = 6\)

\(det\) \(A^{-1} = \frac{1}{6}\)

\(det\) \(A^2\) = (\(det\) \(A)^2\)

\(det\) \(2A\) = \(2^n\) \(det\) \(A\)

10 \(det\) \(A^T\) = \(det\) \(A\)

\(\begin{vmatrix} a & b \\ c & d\end{vmatrix} = \begin{vmatrix} a & c \\\ b & d \end{vmatrix}\)

Prove 10 using 1~9

\(|A^T| = |A|\)

\(|U^T L^T| = |LU|\)

\(|U^T| |L^T| = |L| |U|\)