[Linear Algebra] Lecture 20

Author

SEOYEON CHOI

Published

May 11, 2024

학습목표

  1. Formula for \(A^{-1}\)
  2. Crawers Rule for \(x = A^{-1}b\)
  3. \(|Det\) \(A| =\) volumne of box

\(\begin{bmatrix} a & b \\ c & d\end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a\end{bmatrix}\)

\(A^{-1} = \frac{1}{\text{det } A} C^T\)

\(C^T\) : 여인수 행렬 cofactor matrix의 전환transpose

\(\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \frac{1}{\text{det } A} \begin{bmatrix} + \begin{vmatrix} e & f \\ h & i \end{vmatrix} & - \begin{vmatrix} b & c \\ h & i \end{vmatrix} & + \begin{vmatrix} b & c \\ e & f \end{vmatrix} \\ -\begin{vmatrix} d & f \\ g & i \end{vmatrix} & + \begin{vmatrix} a & c \\ g & i \end{vmatrix} & -\begin{vmatrix} a & c \\ d & f \end{vmatrix} \\ + \begin{vmatrix} s & e \\ g & h \end{vmatrix} & - \begin{vmatrix} a & b \\ g & h \end{vmatrix} & + \begin{vmatrix} a & b \\ d & e \end{vmatrix} \end{bmatrix}\)

\(det\) \(A = aei - afh - bdi + bfg + cdh - ceg\)

\(AC^T = (det\) \(A)I\)

\(A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\)

\(C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}\)

\(C^T = \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix}\)

\(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} = \begin{bmatrix} \text{det } A & 0 & \\ 0 & \text{det } A & 0 \\ 0 & 0 & \text{det } A \end{bmatrix}\)

\(A^{-1} = \frac{1}{\text{det } A} C^T\)의 양변에 \((det\) \(A)A\)를 곱해준 것과 같음

\(\begin{bmatrix}a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \text{det } A & 0 \\ 0 & \text{det } A \end{bmatrix}\)

\((\text{det } A) I_{11} = ad + b (-c) = \text{det } A\)

\((\text{det } A) I_{12} = a(-b) +ba = 0\)

\((\text{det } A) I_{21} = cd+d(-c) = 0\)

\((\text{det } A) I_{22} = c(-b)+da = \text{det } A\)

\((\text{det } A) I_{12} = \begin{vmatrix} a & b \\ a & b \end{vmatrix} = ab-ba\)

- 크래머 공식 Cramer’s Rule

선형시스템 방정식 linear system equation \(Ax = b\)이 있을때, \(A\)가 역행렬이 있다고 정의하여 아래와 같이 계산할 수 있음.

\(x = A^{-1} b = \frac{1}{\text{det } A} C^T b\)

\(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}\)

\(C^T = \begin{bmatrix}c_{11} & c_{21} & c_{31} & \cdots & c_{n1} \\ c_{12} & c_{22} & c_{32} & \cdots & c_{n2} \\ c_{13} & c_{23} & c_{33} & \cdots & c_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & c_{3n} & \cdots & c_{nn} \end{bmatrix}\)

\(b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}\)

\(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\text{det } A} \begin{bmatrix}c_{11} & c_{21} & c_{31} & \cdots & c_{n1} \\ c_{12} & c_{22} & c_{32} & \cdots & c_{n2} \\ c_{13} & c_{23} & c_{33} & \cdots & c_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & c_{3n} & \cdots & c_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}\)

\(x_1 = \frac{c_{11}b_1+c_{21}b_2+\cdots+c_{n1}b_n}{\text{det } A} = \frac{\text{det } B_1}{\text{det } A}\)

\(x_2 = \frac{c_{12}b_1+c_{22}b_2+\cdots+c_{n2}b_n}{\text{det } A} = \frac{\text{det } B_2}{\text{det } A}\)

\(\cdots\)

\(3 \times 3\) 행렬\(A\)이 있을 때, \(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\)

\(x_1 = \frac{1}{\text{det } A} \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33}\end{vmatrix} = \frac{c_{11}b_1+c_{21}b_2+\cdots+c_{n1}b_n}{\text{det } A} = \frac{\text{det } B_1}{\text{det } A}\)

\(x_2 = \frac{1}{\text{det } A} \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33}\end{vmatrix} = \frac{c_{12}b_1+c_{22}b_2+\cdots+c_{n2}b_n}{\text{det } A} = \frac{\text{det } B_2}{\text{det } A}\)

\(x_3 = \frac{1}{\text{det } A} \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} &a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix} = \frac{c_{13}b_1+c_{23}b_2+\cdots+c_{n3}b_n}{\text{det } A} = \frac{\text{det } B_3}{\text{det } A}\)

- 행렬식, 넓이

\(2 \times 2\) 행렬에서 \(det\) \(A\) = area of parallelogram

\(A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}, v_1 = \begin{bmatrix} 4 & 1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 & 3\end{bmatrix}\)

- volume of box

행렬식으로 표현된 상자의 부피는 determinant로 계산 가능하다.

\(A\)의 부피 = \(det\) \(A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}\)