[Linear Algebra] Lecture 21

Author

SEOYEON CHOI

Published

May 18, 2024

학습 목표

고유 벡터의 정의 : \(Ax\) parallel to \(x\)

\(Ax\) is some multiple \(\lambda x\), 따라서, \(Ax = \lambda x\)

If \(A\) is singular, \(\lambda = 0\) is eigenvalue.

How do we find \(\lambda\) and \(x\)

What are \(x\)’s and \(\lambda\)’s for projection matrix?

Any \(x\) plane \(Px = x\), \(\lambda = 1\)

Any \(x\) \(\perp\) plane \(: Px = 0x, \lambda = 0\)

\(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)

\(x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\), \(\lambda = 1\), \(\lambda x = \lambda\), \(A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\)

\(x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}\), \(Ax = -x\), \(\lambda = -1\)

How to solve \(Ax = \lambda x\)

Renote: \((A - \lambda I) x = 0\)

\(det\) \((A - \lambda I ) = 0\)

\(det\) \((A - \lambda I) = \begin{vmatrix} 3-\lambda & 1 \\ 1 & 3-\lambda\end{vmatrix}\)

\((3 - \lambda)^2 - 1 = \lambda^2 - 6 \lambda + 8\)

\(\therefore \lambda_1 = 4, \lambda_2 = 2\)

If \(Ax = \lambda x\) then \((A + 3 I) x = \lambda x 3 x = (\lambda + 3)x\)

If \(Ax = \lambda x\), \(B\) has eigen values \(\alpha\), \(Bx = \alpha x\)

\((A+B)x = (\lambda + \alpha)x \to\) That’s False

Example \(Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\) \(\to\) 90 degree rotation

trace \(= 0+0 =\lambda_1 + \lambda_2\)

\(det\) \(= 1 = \lambda_1\lambda_2\)

\(det\) \((Q - \lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0\)

\(\lambda_1 = i\), \(\lambda_2 = -i\)

- 삼각행렬인데 대각 원소가 같으면 고유벡터가 오직 하나만 존재한다.

\(A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}\)

\(det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ 0 & 3 - \lambda \end{vmatrix}\)

\(\lambda_1 = 3\), \(\lambda_2 = 3\)

\((A - \lambda I)x = \begin{bmatrix} 0 & 1 \\ 0 & 0\end{bmatrix}\) \(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 &0\end{bmatrix}\)

\(x_{\lambda_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\), \(x_{\lambda_2}\)