빅데이터 분석 (6주차) 10월19일
드랍아웃, fastai를 이용한 학습, CPU vs GPU
• 최서연 • 51 min read
- 네트워크 설정, 옵티마이저, 로스
- 모형학습
- train / validation
- 드랍아웃
- 학습과정 비교 (주의: 코드복잡함)
- pytorch + fastai
- CPU vs GPU 시간비교
- 숙제
드랍아웃: 노드에 들어가는 인풋을 임읠 0으로 만들어 학습이 되지 않게 만드는 것.
- 오버피팅 피하기
import torch
import matplotlib.pyplot as plt
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
plt.plot(X,y)
[<matplotlib.lines.Line2D at 0x7fb55dbdd880>]
X.shape,y.shape
(torch.Size([100, 1]), torch.Size([100, 1]))
torch.manual_seed(1) # 초기가중치를 똑같이 , 위 plot을 맞춰보는 net설정해보기
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
plt.plot(X,y)
plt.plot(X,yhat.data)
[<matplotlib.lines.Line2D at 0x7fb55dbc0ac0>]
- 학습시킨 yhat이 y를 따라가면 안 돼, 우리는 임의로 뽑은 것이니까 나오려면 , 직선이 나와야지
- 전형적인 overfitting case
- 또 trend가 있는게 맞는 건지, 0이어야만 하는건지 확실히 알 수 없다
- 그래서 train/validation 나누어서 해보고 그 train을 통해 얻은 선이 validation에 맞나? 맞는 거 빼고 다 오버피팅~
X1=X[:80]
y1=y[:80]
X2=X[80:]
y2=y[80:]
torch.manual_seed(1)
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
for epoc in range(1000):
## 1
y1hat=net(X1)
## 2
loss=loss_fn(y1hat,y1)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
plt.plot(X,y)
plt.plot(X1,net(X1).data,'--r')
plt.plot(X2,net(X2).data,'--g')
[<matplotlib.lines.Line2D at 0x7fb55db30520>]
- 보이는 패턴만 따라가서 loss 줄이려고 하니까
- 위와 같은 오버피팅이 나옴
X1=X[:80]
y1=y[:80]
X2=X[80:]
y2=y[80:]
torch.manual_seed(1)
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Dropout(0.8), ############################ 다음에 통과한 노드의 80%가 0이 되어 y 출력
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
for epoc in range(1000):
## 1
y1hat=net(X1)
## 2
loss=loss_fn(y1hat,y1)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
net.eval() ## 네트워크를 평가모드로 전환
# 학습할 때는 0으로 만들고 평가할 때는 0으로 만들 필요가 없지
plt.plot(X,y)
plt.plot(X1,net(X1).data,'--r')
plt.plot(X2,net(X2).data,'--g')
[<matplotlib.lines.Line2D at 0x7fb55da91cd0>]
Warning: 512개 노드들이 업데이트가 될때 잘 된 특정 노드 위주로 노드가 몰리게 된다. 이는 오버피팅을 불러 일으킬 수 있다.
- 학습할때는 torch.nn.Dropout(0.8) 놓고 평가할때는 지워야겠지
- 80개 train data만 봤을때 dropout한 게 잘 맞는지 아닌지는 관점의 차이일 수 있지만
- 20개 test data 봤을때 dropout한 게 잘 맞는다는 것을 알 수 있지
ref: https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
- During training, randomly zeroes some of the elements of the input tensor with probability p using samples from a Bernoulli distribution. Each channel will be zeroed out independently on every forward call.
- This has proven to be an effective technique for regularization and preventing the co-adaptation of neurons as described in the paper Improving neural networks by preventing co-adaptation of feature detectors .
- dropout은 신경망의 일반화 성능을 높이기 위해 자주 쓰이는 테크닉 중 하나
- 신경망 구조 학습 시, 레이어 간 연결 중 일부를 렌덤하게 삭제하면, 여러 개의 네트워크를 합치는 효과를 낼 수 있고, 이로 인해 일반화 성능이 높아짐
-
데이터 생성
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)
-
tr/val 분리
X_tr=X[:80]
y_tr=y[:80]
X_val=X[80:]
y_val=y[80:]
-
네트워크, 옵티마이저, 손실함수 설정
- 드랍아웃을 이용한 네트워트 (net2)와 그렇지 않은 네트워크 (net1)
- 대응하는 옵티마이저 1,2 설정
- 손실함수
torch.manual_seed(1)
net1=torch.nn.Sequential(
torch.nn.Linear(1,512),
torch.nn.ReLU(),
torch.nn.Linear(512,1))
optimizer_net1 = torch.optim.Adam(net1.parameters())
net2=torch.nn.Sequential(
torch.nn.Linear(1,512),
torch.nn.ReLU(),
torch.nn.Dropout(0.8),
torch.nn.Linear(512,1))
optimizer_net2 = torch.optim.Adam(net2.parameters())
loss_fn=torch.nn.MSELoss()
tr_loss_net1=[] # 시뮬레이션 결과 저장할 공간을 만드는 과정
val_loss_net1=[]
tr_loss_net2=[]
val_loss_net2=[]
for epoc in range(1000):
## 1
yhat_tr_net1 = net1(X_tr)
## 2
loss_tr = loss_fn(yhat_tr_net1, y_tr)
## 3
loss_tr.backward()
## 4
optimizer_net1.step()
net1.zero_grad()
## 5 기록
### tr
tr_loss_net1.append(loss_tr.item())
### val
yhat_val_net1 = net1(X_val)
loss_val = loss_fn(yhat_val_net1,y_val)
val_loss_net1.append(loss_val.item())
for epoc in range(1000):
## 1
yhat_tr_net2 = net2(X_tr)
## 2
loss_tr = loss_fn(yhat_tr_net2, y_tr)
## 3
loss_tr.backward()
## 4
optimizer_net2.step()
net2.zero_grad()
## 5 기록
### tr
net2.eval()
tr_loss_net2.append(loss_tr.item())
### val
yhat_val_net2 = net2(X_val)
loss_val = loss_fn(yhat_val_net2,y_val)
val_loss_net2.append(loss_val.item())
net2.train() # training 모드로 변환
net2.eval() # 그림 그리기 위해 또 코드 추가
fig , ((ax1,ax2),(ax3,ax4)) = plt.subplots(2,2)
ax1.plot(X,y,'.');ax1.plot(X_tr,net1(X_tr).data); ax1.plot(X_val,net1(X_val).data);
ax2.plot(X,y,'.');ax2.plot(X_tr,net2(X_tr).data); ax2.plot(X_val,net2(X_val).data);
ax3.plot(tr_loss_net1);ax3.plot(val_loss_net1);
ax4.plot(tr_loss_net2);ax4.plot(val_loss_net2);
- ax3 내려가다(잘 적합) 올라간다(과적합)
- ax4 점점 내려감(잘 적합)
-
다 좋은데 코드를 짜는것이 너무 힘들다.
- 생각해보니까 미니배치도 만들어야 함 + 미니배치를 나눈상태에서 GPU 메모리에 파라메터도 올려야함.
- 조기종료(과적합 전 종료)와 같은 기능도 구현해야함 + 기타등등을 구현해야함.
- 나중에는 학습률을 서로 다르게 돌려가며 결과도 기록해야함 $\to$ 그래야 좋은 학습률 선택가능
- for문안에 step1~step4를 넣는것도 너무 반복작업임.
- 등등..
-
위와 같은 것들의 특징: 머리로 상상하기는 쉽지만 실제 구현하는 것은 까다롭다.
Note: pseudocode 의사코드: In computer science, pseudocode is a plain language description of the steps in an algorithm or another system. Pseudocode often uses structural conventions of a normal programming language, but is intended for human reading rather than machine reading. It typically omits details that are essential for machine understanding of the algorithm, such as variable declarations and language-specific code. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for people to understand than conventional programming language code, and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications to document algorithms and in planning of software and other algorithms.
-
사실 우리가 하고싶은것
- 아키텍처를 설계: 데이터를 보고 맞춰서 설계해야할 때가 많음 (우리가 해야한다)
- 손실함수: 통계학과 교수님들이 연구하심
- 옵티마이저: 산공교수님들이 연구하심
-
교수님 생각
- 기업의 욕심: real-data를 분석하는 딥러닝 아키텍처 설계 $\to$ 아키텍처별로 결과를 관찰 (편하게) $\Longrightarrow$ fastai + real data
- 학생의 욕심: 그러면서도 모형이 돌아가는 원리는 아주 세밀하게 알고싶음 $\Longrightarrow$ pytorch + toy example (regression 등을 위주로)
- 연구자의 욕심: 기존의 모형을 조금 변경해서 쓰고싶음 $\Longrightarrow$ (pytorch + fastai) + any data
-
tensorflow + keras vs pytorch + fastai
-
데이터셋을 만든다.
X_tr=X[:80]
y_tr=y[:80]
X_val=X[80:]
y_val=y[80:]
ds1=torch.utils.data.TensorDataset(X_tr,y_tr)
ds2=torch.utils.data.TensorDataset(X_val,y_val)
-
데이터로더를 만든다.
- 여기까지 pytorch level
- 다음부터 fastai
dl1 = torch.utils.data.DataLoader(ds1, batch_size=80) # 80개 다 쓰겠다~
dl2 = torch.utils.data.DataLoader(ds2, batch_size=20)
-
데이터로더스를 만든다.
from fastai.vision.all import *
dls=DataLoaders(dl1,dl2)
-
네트워크 설계 (드랍아웃 제외)
torch.manual_seed(1)
net_fastai = torch.nn.Sequential(
torch.nn.Linear(in_features=1, out_features=512),
torch.nn.ReLU(),
#torch.nn.Dropout(0.8),
torch.nn.Linear(in_features=512, out_features=1))
#optimizer
loss_fn=torch.nn.MSELoss() # torch에 있는 거 넣어줘도 된다
-
러너오브젝트 (for문 대신돌려주는 오브젝트)
lrnr= Learner(dls,net_fastai,opt_func=Adam,loss_func=loss_fn)
-
에폭만 설정하고 바로 학습
lrnr.fit(1000)
epoch | train_loss | valid_loss | time |
---|---|---|---|
0 | 1.277156 | 0.491314 | 00:00 |
1 | 1.277145 | 0.455286 | 00:00 |
2 | 1.275104 | 0.444275 | 00:00 |
3 | 1.274429 | 0.465787 | 00:00 |
4 | 1.273436 | 0.507203 | 00:00 |
5 | 1.272421 | 0.548102 | 00:00 |
6 | 1.271840 | 0.561292 | 00:00 |
7 | 1.271377 | 0.549409 | 00:00 |
8 | 1.270855 | 0.530416 | 00:00 |
9 | 1.270437 | 0.520700 | 00:00 |
10 | 1.270176 | 0.526273 | 00:00 |
11 | 1.269935 | 0.543579 | 00:00 |
12 | 1.269655 | 0.562939 | 00:00 |
13 | 1.269411 | 0.571586 | 00:00 |
14 | 1.269217 | 0.563700 | 00:00 |
15 | 1.269018 | 0.543646 | 00:00 |
16 | 1.268787 | 0.521385 | 00:00 |
17 | 1.268563 | 0.505799 | 00:00 |
18 | 1.268362 | 0.500011 | 00:00 |
19 | 1.268159 | 0.501830 | 00:00 |
20 | 1.267941 | 0.506255 | 00:00 |
21 | 1.267730 | 0.506739 | 00:00 |
22 | 1.267540 | 0.499733 | 00:00 |
23 | 1.267353 | 0.487385 | 00:00 |
24 | 1.267163 | 0.474839 | 00:00 |
25 | 1.266981 | 0.466926 | 00:00 |
26 | 1.266814 | 0.465347 | 00:00 |
27 | 1.266648 | 0.468656 | 00:00 |
28 | 1.266480 | 0.473641 | 00:00 |
29 | 1.266316 | 0.476266 | 00:00 |
30 | 1.266156 | 0.474677 | 00:00 |
31 | 1.265996 | 0.469958 | 00:00 |
32 | 1.265833 | 0.465630 | 00:00 |
33 | 1.265673 | 0.464544 | 00:00 |
34 | 1.265514 | 0.467181 | 00:00 |
35 | 1.265355 | 0.472571 | 00:00 |
36 | 1.265194 | 0.477105 | 00:00 |
37 | 1.265037 | 0.478357 | 00:00 |
38 | 1.264880 | 0.475766 | 00:00 |
39 | 1.264724 | 0.471696 | 00:00 |
40 | 1.264569 | 0.469089 | 00:00 |
41 | 1.264416 | 0.469158 | 00:00 |
42 | 1.264262 | 0.471343 | 00:00 |
43 | 1.264108 | 0.472992 | 00:00 |
44 | 1.263955 | 0.471979 | 00:00 |
45 | 1.263801 | 0.468276 | 00:00 |
46 | 1.263646 | 0.463477 | 00:00 |
47 | 1.263491 | 0.460086 | 00:00 |
48 | 1.263336 | 0.458932 | 00:00 |
49 | 1.263181 | 0.459443 | 00:00 |
50 | 1.263025 | 0.459690 | 00:00 |
51 | 1.262869 | 0.457996 | 00:00 |
52 | 1.262714 | 0.454969 | 00:00 |
53 | 1.262558 | 0.451982 | 00:00 |
54 | 1.262402 | 0.450564 | 00:00 |
55 | 1.262247 | 0.450934 | 00:00 |
56 | 1.262090 | 0.451861 | 00:00 |
57 | 1.261933 | 0.451914 | 00:00 |
58 | 1.261776 | 0.450721 | 00:00 |
59 | 1.261619 | 0.448978 | 00:00 |
60 | 1.261461 | 0.447796 | 00:00 |
61 | 1.261303 | 0.448038 | 00:00 |
62 | 1.261144 | 0.448761 | 00:00 |
63 | 1.260986 | 0.449142 | 00:00 |
64 | 1.260826 | 0.448443 | 00:00 |
65 | 1.260667 | 0.446837 | 00:00 |
66 | 1.260507 | 0.445661 | 00:00 |
67 | 1.260347 | 0.445344 | 00:00 |
68 | 1.260187 | 0.445592 | 00:00 |
69 | 1.260026 | 0.445488 | 00:00 |
70 | 1.259866 | 0.444427 | 00:00 |
71 | 1.259705 | 0.442824 | 00:00 |
72 | 1.259543 | 0.441615 | 00:00 |
73 | 1.259382 | 0.441126 | 00:00 |
74 | 1.259220 | 0.441023 | 00:00 |
75 | 1.259058 | 0.440497 | 00:00 |
76 | 1.258896 | 0.439592 | 00:00 |
77 | 1.258733 | 0.438460 | 00:00 |
78 | 1.258569 | 0.437588 | 00:00 |
79 | 1.258405 | 0.437321 | 00:00 |
80 | 1.258241 | 0.437219 | 00:00 |
81 | 1.258077 | 0.436916 | 00:00 |
82 | 1.257912 | 0.435913 | 00:00 |
83 | 1.257747 | 0.435003 | 00:00 |
84 | 1.257582 | 0.434601 | 00:00 |
85 | 1.257416 | 0.434494 | 00:00 |
86 | 1.257249 | 0.434309 | 00:00 |
87 | 1.257081 | 0.433745 | 00:00 |
88 | 1.256913 | 0.432914 | 00:00 |
89 | 1.256744 | 0.432331 | 00:00 |
90 | 1.256575 | 0.432165 | 00:00 |
91 | 1.256406 | 0.432003 | 00:00 |
92 | 1.256236 | 0.431670 | 00:00 |
93 | 1.256065 | 0.430937 | 00:00 |
94 | 1.255894 | 0.430317 | 00:00 |
95 | 1.255723 | 0.429924 | 00:00 |
96 | 1.255550 | 0.429707 | 00:00 |
97 | 1.255377 | 0.429296 | 00:00 |
98 | 1.255203 | 0.428846 | 00:00 |
99 | 1.255029 | 0.428160 | 00:00 |
100 | 1.254854 | 0.427743 | 00:00 |
101 | 1.254679 | 0.427369 | 00:00 |
102 | 1.254504 | 0.426952 | 00:00 |
103 | 1.254328 | 0.426511 | 00:00 |
104 | 1.254151 | 0.426140 | 00:00 |
105 | 1.253973 | 0.425836 | 00:00 |
106 | 1.253796 | 0.425516 | 00:00 |
107 | 1.253617 | 0.425156 | 00:00 |
108 | 1.253438 | 0.424890 | 00:00 |
109 | 1.253259 | 0.424601 | 00:00 |
110 | 1.253079 | 0.424245 | 00:00 |
111 | 1.252898 | 0.423975 | 00:00 |
112 | 1.252717 | 0.423880 | 00:00 |
113 | 1.252535 | 0.423618 | 00:00 |
114 | 1.252353 | 0.423350 | 00:00 |
115 | 1.252170 | 0.422870 | 00:00 |
116 | 1.251987 | 0.422535 | 00:00 |
117 | 1.251803 | 0.422493 | 00:00 |
118 | 1.251619 | 0.422289 | 00:00 |
119 | 1.251435 | 0.421934 | 00:00 |
120 | 1.251250 | 0.421515 | 00:00 |
121 | 1.251064 | 0.421340 | 00:00 |
122 | 1.250877 | 0.421245 | 00:00 |
123 | 1.250690 | 0.421051 | 00:00 |
124 | 1.250502 | 0.420791 | 00:00 |
125 | 1.250314 | 0.420412 | 00:00 |
126 | 1.250125 | 0.420317 | 00:00 |
127 | 1.249936 | 0.420248 | 00:00 |
128 | 1.249747 | 0.420143 | 00:00 |
129 | 1.249556 | 0.419855 | 00:00 |
130 | 1.249366 | 0.419597 | 00:00 |
131 | 1.249175 | 0.419529 | 00:00 |
132 | 1.248984 | 0.419402 | 00:00 |
133 | 1.248792 | 0.419158 | 00:00 |
134 | 1.248600 | 0.419000 | 00:00 |
135 | 1.248406 | 0.418832 | 00:00 |
136 | 1.248212 | 0.418870 | 00:00 |
137 | 1.248018 | 0.418848 | 00:00 |
138 | 1.247823 | 0.418646 | 00:00 |
139 | 1.247628 | 0.418527 | 00:00 |
140 | 1.247432 | 0.418479 | 00:00 |
141 | 1.247236 | 0.418403 | 00:00 |
142 | 1.247040 | 0.418210 | 00:00 |
143 | 1.246843 | 0.417947 | 00:00 |
144 | 1.246646 | 0.417901 | 00:00 |
145 | 1.246448 | 0.417914 | 00:00 |
146 | 1.246250 | 0.417826 | 00:00 |
147 | 1.246051 | 0.417753 | 00:00 |
148 | 1.245852 | 0.417775 | 00:00 |
149 | 1.245652 | 0.417853 | 00:00 |
150 | 1.245452 | 0.417885 | 00:00 |
151 | 1.245251 | 0.417743 | 00:00 |
152 | 1.245050 | 0.417730 | 00:00 |
153 | 1.244848 | 0.417727 | 00:00 |
154 | 1.244646 | 0.417681 | 00:00 |
155 | 1.244443 | 0.417622 | 00:00 |
156 | 1.244240 | 0.417630 | 00:00 |
157 | 1.244037 | 0.417595 | 00:00 |
158 | 1.243833 | 0.417639 | 00:00 |
159 | 1.243629 | 0.417726 | 00:00 |
160 | 1.243425 | 0.417700 | 00:00 |
161 | 1.243219 | 0.417724 | 00:00 |
162 | 1.243014 | 0.417833 | 00:00 |
163 | 1.242808 | 0.417928 | 00:00 |
164 | 1.242601 | 0.417935 | 00:00 |
165 | 1.242394 | 0.417993 | 00:00 |
166 | 1.242187 | 0.418112 | 00:00 |
167 | 1.241980 | 0.418193 | 00:00 |
168 | 1.241772 | 0.418233 | 00:00 |
169 | 1.241564 | 0.418344 | 00:00 |
170 | 1.241355 | 0.418483 | 00:00 |
171 | 1.241146 | 0.418544 | 00:00 |
172 | 1.240937 | 0.418641 | 00:00 |
173 | 1.240727 | 0.418748 | 00:00 |
174 | 1.240517 | 0.418859 | 00:00 |
175 | 1.240307 | 0.418996 | 00:00 |
176 | 1.240097 | 0.419117 | 00:00 |
177 | 1.239886 | 0.419244 | 00:00 |
178 | 1.239675 | 0.419343 | 00:00 |
179 | 1.239463 | 0.419554 | 00:00 |
180 | 1.239251 | 0.419620 | 00:00 |
181 | 1.239040 | 0.419845 | 00:00 |
182 | 1.238827 | 0.420004 | 00:00 |
183 | 1.238615 | 0.420229 | 00:00 |
184 | 1.238402 | 0.420362 | 00:00 |
185 | 1.238188 | 0.420565 | 00:00 |
186 | 1.237974 | 0.420724 | 00:00 |
187 | 1.237759 | 0.420960 | 00:00 |
188 | 1.237545 | 0.421179 | 00:00 |
189 | 1.237330 | 0.421355 | 00:00 |
190 | 1.237115 | 0.421552 | 00:00 |
191 | 1.236899 | 0.421769 | 00:00 |
192 | 1.236684 | 0.421995 | 00:00 |
193 | 1.236467 | 0.422213 | 00:00 |
194 | 1.236251 | 0.422478 | 00:00 |
195 | 1.236034 | 0.422736 | 00:00 |
196 | 1.235816 | 0.422935 | 00:00 |
197 | 1.235599 | 0.423257 | 00:00 |
198 | 1.235381 | 0.423523 | 00:00 |
199 | 1.235163 | 0.423746 | 00:00 |
200 | 1.234944 | 0.424009 | 00:00 |
201 | 1.234725 | 0.424427 | 00:00 |
202 | 1.234506 | 0.424665 | 00:00 |
203 | 1.234287 | 0.424929 | 00:00 |
204 | 1.234068 | 0.425280 | 00:00 |
205 | 1.233848 | 0.425315 | 00:00 |
206 | 1.233629 | 0.425682 | 00:00 |
207 | 1.233409 | 0.426025 | 00:00 |
208 | 1.233188 | 0.426234 | 00:00 |
209 | 1.232968 | 0.426510 | 00:00 |
210 | 1.232747 | 0.427178 | 00:00 |
211 | 1.232525 | 0.427304 | 00:00 |
212 | 1.232305 | 0.427802 | 00:00 |
213 | 1.232084 | 0.428111 | 00:00 |
214 | 1.231863 | 0.428183 | 00:00 |
215 | 1.231642 | 0.428455 | 00:00 |
216 | 1.231420 | 0.428837 | 00:00 |
217 | 1.231197 | 0.429088 | 00:00 |
218 | 1.230976 | 0.429649 | 00:00 |
219 | 1.230753 | 0.430295 | 00:00 |
220 | 1.230530 | 0.430616 | 00:00 |
221 | 1.230307 | 0.431053 | 00:00 |
222 | 1.230084 | 0.431475 | 00:00 |
223 | 1.229861 | 0.431794 | 00:00 |
224 | 1.229638 | 0.431851 | 00:00 |
225 | 1.229414 | 0.432452 | 00:00 |
226 | 1.229190 | 0.433051 | 00:00 |
227 | 1.228966 | 0.433213 | 00:00 |
228 | 1.228742 | 0.434148 | 00:00 |
229 | 1.228517 | 0.434328 | 00:00 |
230 | 1.228294 | 0.435062 | 00:00 |
231 | 1.228069 | 0.435324 | 00:00 |
232 | 1.227844 | 0.435593 | 00:00 |
233 | 1.227620 | 0.436242 | 00:00 |
234 | 1.227395 | 0.436324 | 00:00 |
235 | 1.227170 | 0.437004 | 00:00 |
236 | 1.226944 | 0.437824 | 00:00 |
237 | 1.226719 | 0.438240 | 00:00 |
238 | 1.226493 | 0.438990 | 00:00 |
239 | 1.226267 | 0.439452 | 00:00 |
240 | 1.226041 | 0.439582 | 00:00 |
241 | 1.225816 | 0.440158 | 00:00 |
242 | 1.225590 | 0.440385 | 00:00 |
243 | 1.225363 | 0.440595 | 00:00 |
244 | 1.225136 | 0.441521 | 00:00 |
245 | 1.224909 | 0.441691 | 00:00 |
246 | 1.224683 | 0.442780 | 00:00 |
247 | 1.224456 | 0.443318 | 00:00 |
248 | 1.224230 | 0.443610 | 00:00 |
249 | 1.224003 | 0.444733 | 00:00 |
250 | 1.223777 | 0.444483 | 00:00 |
251 | 1.223550 | 0.445368 | 00:00 |
252 | 1.223323 | 0.445906 | 00:00 |
253 | 1.223096 | 0.446098 | 00:00 |
254 | 1.222869 | 0.447504 | 00:00 |
255 | 1.222642 | 0.447326 | 00:00 |
256 | 1.222415 | 0.448967 | 00:00 |
257 | 1.222188 | 0.449487 | 00:00 |
258 | 1.221961 | 0.449353 | 00:00 |
259 | 1.221734 | 0.450770 | 00:00 |
260 | 1.221507 | 0.449695 | 00:00 |
261 | 1.221280 | 0.451468 | 00:00 |
262 | 1.221052 | 0.450778 | 00:00 |
263 | 1.220825 | 0.452406 | 00:00 |
264 | 1.220597 | 0.453030 | 00:00 |
265 | 1.220370 | 0.454064 | 00:00 |
266 | 1.220143 | 0.455389 | 00:00 |
267 | 1.219915 | 0.455432 | 00:00 |
268 | 1.219687 | 0.456134 | 00:00 |
269 | 1.219459 | 0.456304 | 00:00 |
270 | 1.219232 | 0.456480 | 00:00 |
271 | 1.219004 | 0.457973 | 00:00 |
272 | 1.218777 | 0.457321 | 00:00 |
273 | 1.218550 | 0.459607 | 00:00 |
274 | 1.218322 | 0.458900 | 00:00 |
275 | 1.218094 | 0.460690 | 00:00 |
276 | 1.217867 | 0.460998 | 00:00 |
277 | 1.217640 | 0.461632 | 00:00 |
278 | 1.217412 | 0.462792 | 00:00 |
279 | 1.217185 | 0.462078 | 00:00 |
280 | 1.216957 | 0.464403 | 00:00 |
281 | 1.216730 | 0.463427 | 00:00 |
282 | 1.216502 | 0.465762 | 00:00 |
283 | 1.216274 | 0.465187 | 00:00 |
284 | 1.216047 | 0.467141 | 00:00 |
285 | 1.215820 | 0.467549 | 00:00 |
286 | 1.215592 | 0.468001 | 00:00 |
287 | 1.215364 | 0.468962 | 00:00 |
288 | 1.215137 | 0.468817 | 00:00 |
289 | 1.214908 | 0.470964 | 00:00 |
290 | 1.214682 | 0.468905 | 00:00 |
291 | 1.214455 | 0.473823 | 00:00 |
292 | 1.214228 | 0.468575 | 00:00 |
293 | 1.214002 | 0.476916 | 00:00 |
294 | 1.213777 | 0.469099 | 00:00 |
295 | 1.213553 | 0.479390 | 00:00 |
296 | 1.213328 | 0.473587 | 00:00 |
297 | 1.213103 | 0.477545 | 00:00 |
298 | 1.212876 | 0.480034 | 00:00 |
299 | 1.212650 | 0.473731 | 00:00 |
300 | 1.212426 | 0.481915 | 00:00 |
301 | 1.212201 | 0.474704 | 00:00 |
302 | 1.211975 | 0.478484 | 00:00 |
303 | 1.211748 | 0.481180 | 00:00 |
304 | 1.211523 | 0.477734 | 00:00 |
305 | 1.211298 | 0.485058 | 00:00 |
306 | 1.211073 | 0.482515 | 00:00 |
307 | 1.210848 | 0.485141 | 00:00 |
308 | 1.210622 | 0.486957 | 00:00 |
309 | 1.210398 | 0.483995 | 00:00 |
310 | 1.210173 | 0.487897 | 00:00 |
311 | 1.209949 | 0.484598 | 00:00 |
312 | 1.209725 | 0.487746 | 00:00 |
313 | 1.209501 | 0.487176 | 00:00 |
314 | 1.209277 | 0.488011 | 00:00 |
315 | 1.209053 | 0.490575 | 00:00 |
316 | 1.208830 | 0.490209 | 00:00 |
317 | 1.208606 | 0.492787 | 00:00 |
318 | 1.208382 | 0.492908 | 00:00 |
319 | 1.208159 | 0.493765 | 00:00 |
320 | 1.207935 | 0.495061 | 00:00 |
321 | 1.207713 | 0.494494 | 00:00 |
322 | 1.207490 | 0.497208 | 00:00 |
323 | 1.207268 | 0.495765 | 00:00 |
324 | 1.207046 | 0.498866 | 00:00 |
325 | 1.206824 | 0.496930 | 00:00 |
326 | 1.206602 | 0.498859 | 00:00 |
327 | 1.206380 | 0.499887 | 00:00 |
328 | 1.206159 | 0.499914 | 00:00 |
329 | 1.205937 | 0.502608 | 00:00 |
330 | 1.205715 | 0.502366 | 00:00 |
331 | 1.205495 | 0.505626 | 00:00 |
332 | 1.205274 | 0.504775 | 00:00 |
333 | 1.205053 | 0.507247 | 00:00 |
334 | 1.204832 | 0.505510 | 00:00 |
335 | 1.204612 | 0.508987 | 00:00 |
336 | 1.204392 | 0.506300 | 00:00 |
337 | 1.204173 | 0.510754 | 00:00 |
338 | 1.203953 | 0.507736 | 00:00 |
339 | 1.203734 | 0.513753 | 00:00 |
340 | 1.203515 | 0.508676 | 00:00 |
341 | 1.203297 | 0.516931 | 00:00 |
342 | 1.203079 | 0.510553 | 00:00 |
343 | 1.202860 | 0.517162 | 00:00 |
344 | 1.202642 | 0.513240 | 00:00 |
345 | 1.202424 | 0.515739 | 00:00 |
346 | 1.202206 | 0.516983 | 00:00 |
347 | 1.201988 | 0.515956 | 00:00 |
348 | 1.201771 | 0.521419 | 00:00 |
349 | 1.201554 | 0.517885 | 00:00 |
350 | 1.201338 | 0.525130 | 00:00 |
351 | 1.201122 | 0.519955 | 00:00 |
352 | 1.200906 | 0.526839 | 00:00 |
353 | 1.200691 | 0.522522 | 00:00 |
354 | 1.200475 | 0.527202 | 00:00 |
355 | 1.200259 | 0.524338 | 00:00 |
356 | 1.200043 | 0.527433 | 00:00 |
357 | 1.199828 | 0.527059 | 00:00 |
358 | 1.199612 | 0.525954 | 00:00 |
359 | 1.199397 | 0.532018 | 00:00 |
360 | 1.199182 | 0.524938 | 00:00 |
361 | 1.198969 | 0.536932 | 00:00 |
362 | 1.198757 | 0.525091 | 00:00 |
363 | 1.198544 | 0.539394 | 00:00 |
364 | 1.198332 | 0.528241 | 00:00 |
365 | 1.198120 | 0.538193 | 00:00 |
366 | 1.197907 | 0.537200 | 00:00 |
367 | 1.197693 | 0.534040 | 00:00 |
368 | 1.197481 | 0.543126 | 00:00 |
369 | 1.197270 | 0.535240 | 00:00 |
370 | 1.197057 | 0.541768 | 00:00 |
371 | 1.196846 | 0.542524 | 00:00 |
372 | 1.196634 | 0.537782 | 00:00 |
373 | 1.196423 | 0.547702 | 00:00 |
374 | 1.196213 | 0.538663 | 00:00 |
375 | 1.196003 | 0.546115 | 00:00 |
376 | 1.195793 | 0.545712 | 00:00 |
377 | 1.195583 | 0.543213 | 00:00 |
378 | 1.195374 | 0.552051 | 00:00 |
379 | 1.195165 | 0.544678 | 00:00 |
380 | 1.194957 | 0.551509 | 00:00 |
381 | 1.194749 | 0.548909 | 00:00 |
382 | 1.194540 | 0.548179 | 00:00 |
383 | 1.194333 | 0.553327 | 00:00 |
384 | 1.194125 | 0.549814 | 00:00 |
385 | 1.193918 | 0.555625 | 00:00 |
386 | 1.193711 | 0.554851 | 00:00 |
387 | 1.193504 | 0.555712 | 00:00 |
388 | 1.193297 | 0.559774 | 00:00 |
389 | 1.193091 | 0.555476 | 00:00 |
390 | 1.192885 | 0.562433 | 00:00 |
391 | 1.192680 | 0.557535 | 00:00 |
392 | 1.192475 | 0.559940 | 00:00 |
393 | 1.192270 | 0.562124 | 00:00 |
394 | 1.192065 | 0.556576 | 00:00 |
395 | 1.191862 | 0.566213 | 00:00 |
396 | 1.191659 | 0.559902 | 00:00 |
397 | 1.191455 | 0.567632 | 00:00 |
398 | 1.191251 | 0.566840 | 00:00 |
399 | 1.191049 | 0.564430 | 00:00 |
400 | 1.190845 | 0.570297 | 00:00 |
401 | 1.190642 | 0.562683 | 00:00 |
402 | 1.190440 | 0.571745 | 00:00 |
403 | 1.190239 | 0.565711 | 00:00 |
404 | 1.190037 | 0.571408 | 00:00 |
405 | 1.189836 | 0.571616 | 00:00 |
406 | 1.189634 | 0.569108 | 00:00 |
407 | 1.189433 | 0.576971 | 00:00 |
408 | 1.189232 | 0.568847 | 00:00 |
409 | 1.189033 | 0.577803 | 00:00 |
410 | 1.188832 | 0.571170 | 00:00 |
411 | 1.188632 | 0.576848 | 00:00 |
412 | 1.188433 | 0.575512 | 00:00 |
413 | 1.188233 | 0.576850 | 00:00 |
414 | 1.188034 | 0.579066 | 00:00 |
415 | 1.187835 | 0.577082 | 00:00 |
416 | 1.187636 | 0.581787 | 00:00 |
417 | 1.187439 | 0.578078 | 00:00 |
418 | 1.187240 | 0.582614 | 00:00 |
419 | 1.187043 | 0.582266 | 00:00 |
420 | 1.186846 | 0.580410 | 00:00 |
421 | 1.186649 | 0.587922 | 00:00 |
422 | 1.186452 | 0.578261 | 00:00 |
423 | 1.186255 | 0.594928 | 00:00 |
424 | 1.186061 | 0.578724 | 00:00 |
425 | 1.185867 | 0.596110 | 00:00 |
426 | 1.185673 | 0.586743 | 00:00 |
427 | 1.185479 | 0.589400 | 00:00 |
428 | 1.185284 | 0.598742 | 00:00 |
429 | 1.185089 | 0.584824 | 00:00 |
430 | 1.184896 | 0.599986 | 00:00 |
431 | 1.184702 | 0.591904 | 00:00 |
432 | 1.184508 | 0.593857 | 00:00 |
433 | 1.184313 | 0.601378 | 00:00 |
434 | 1.184120 | 0.595892 | 00:00 |
435 | 1.183926 | 0.602663 | 00:00 |
436 | 1.183734 | 0.601748 | 00:00 |
437 | 1.183541 | 0.600579 | 00:00 |
438 | 1.183349 | 0.604881 | 00:00 |
439 | 1.183156 | 0.602084 | 00:00 |
440 | 1.182963 | 0.604611 | 00:00 |
441 | 1.182772 | 0.603985 | 00:00 |
442 | 1.182581 | 0.607958 | 00:00 |
443 | 1.182390 | 0.606345 | 00:00 |
444 | 1.182200 | 0.612392 | 00:00 |
445 | 1.182010 | 0.607756 | 00:00 |
446 | 1.181820 | 0.613536 | 00:00 |
447 | 1.181630 | 0.608906 | 00:00 |
448 | 1.181442 | 0.613233 | 00:00 |
449 | 1.181255 | 0.613283 | 00:00 |
450 | 1.181066 | 0.618034 | 00:00 |
451 | 1.180877 | 0.616676 | 00:00 |
452 | 1.180690 | 0.619615 | 00:00 |
453 | 1.180502 | 0.617715 | 00:00 |
454 | 1.180315 | 0.619031 | 00:00 |
455 | 1.180128 | 0.617161 | 00:00 |
456 | 1.179941 | 0.620506 | 00:00 |
457 | 1.179755 | 0.619178 | 00:00 |
458 | 1.179570 | 0.624192 | 00:00 |
459 | 1.179384 | 0.625420 | 00:00 |
460 | 1.179197 | 0.624873 | 00:00 |
461 | 1.179013 | 0.628864 | 00:00 |
462 | 1.178828 | 0.624363 | 00:00 |
463 | 1.178643 | 0.632658 | 00:00 |
464 | 1.178460 | 0.626067 | 00:00 |
465 | 1.178276 | 0.635065 | 00:00 |
466 | 1.178094 | 0.629589 | 00:00 |
467 | 1.177910 | 0.637503 | 00:00 |
468 | 1.177727 | 0.631370 | 00:00 |
469 | 1.177545 | 0.636182 | 00:00 |
470 | 1.177362 | 0.631440 | 00:00 |
471 | 1.177178 | 0.635118 | 00:00 |
472 | 1.176996 | 0.633891 | 00:00 |
473 | 1.176813 | 0.637058 | 00:00 |
474 | 1.176632 | 0.640742 | 00:00 |
475 | 1.176450 | 0.640980 | 00:00 |
476 | 1.176269 | 0.646436 | 00:00 |
477 | 1.176087 | 0.639515 | 00:00 |
478 | 1.175906 | 0.649731 | 00:00 |
479 | 1.175728 | 0.633841 | 00:00 |
480 | 1.175548 | 0.656491 | 00:00 |
481 | 1.175371 | 0.630892 | 00:00 |
482 | 1.175196 | 0.660517 | 00:00 |
483 | 1.175021 | 0.639879 | 00:00 |
484 | 1.174845 | 0.648354 | 00:00 |
485 | 1.174665 | 0.659490 | 00:00 |
486 | 1.174490 | 0.640693 | 00:00 |
487 | 1.174316 | 0.661490 | 00:00 |
488 | 1.174139 | 0.652804 | 00:00 |
489 | 1.173962 | 0.644998 | 00:00 |
490 | 1.173787 | 0.664158 | 00:00 |
491 | 1.173613 | 0.646924 | 00:00 |
492 | 1.173438 | 0.652377 | 00:00 |
493 | 1.173262 | 0.666445 | 00:00 |
494 | 1.173087 | 0.647732 | 00:00 |
495 | 1.172916 | 0.659727 | 00:00 |
496 | 1.172741 | 0.663725 | 00:00 |
497 | 1.172568 | 0.648634 | 00:00 |
498 | 1.172397 | 0.664491 | 00:00 |
499 | 1.172224 | 0.663532 | 00:00 |
500 | 1.172052 | 0.651162 | 00:00 |
501 | 1.171881 | 0.671245 | 00:00 |
502 | 1.171711 | 0.664546 | 00:00 |
503 | 1.171539 | 0.657829 | 00:00 |
504 | 1.171369 | 0.674585 | 00:00 |
505 | 1.171199 | 0.665482 | 00:00 |
506 | 1.171029 | 0.660295 | 00:00 |
507 | 1.170860 | 0.676046 | 00:00 |
508 | 1.170691 | 0.664666 | 00:00 |
509 | 1.170523 | 0.664394 | 00:00 |
510 | 1.170355 | 0.675279 | 00:00 |
511 | 1.170187 | 0.666940 | 00:00 |
512 | 1.170019 | 0.669697 | 00:00 |
513 | 1.169852 | 0.675405 | 00:00 |
514 | 1.169684 | 0.670651 | 00:00 |
515 | 1.169518 | 0.671216 | 00:00 |
516 | 1.169351 | 0.677501 | 00:00 |
517 | 1.169186 | 0.671080 | 00:00 |
518 | 1.169021 | 0.674967 | 00:00 |
519 | 1.168855 | 0.679167 | 00:00 |
520 | 1.168690 | 0.674872 | 00:00 |
521 | 1.168525 | 0.679228 | 00:00 |
522 | 1.168361 | 0.680458 | 00:00 |
523 | 1.168196 | 0.678544 | 00:00 |
524 | 1.168033 | 0.683338 | 00:00 |
525 | 1.167870 | 0.680968 | 00:00 |
526 | 1.167705 | 0.684111 | 00:00 |
527 | 1.167542 | 0.683222 | 00:00 |
528 | 1.167380 | 0.684760 | 00:00 |
529 | 1.167218 | 0.684904 | 00:00 |
530 | 1.167056 | 0.683687 | 00:00 |
531 | 1.166896 | 0.686523 | 00:00 |
532 | 1.166734 | 0.685283 | 00:00 |
533 | 1.166573 | 0.689747 | 00:00 |
534 | 1.166413 | 0.688458 | 00:00 |
535 | 1.166252 | 0.691884 | 00:00 |
536 | 1.166091 | 0.692554 | 00:00 |
537 | 1.165933 | 0.695983 | 00:00 |
538 | 1.165772 | 0.696132 | 00:00 |
539 | 1.165612 | 0.699348 | 00:00 |
540 | 1.165453 | 0.697565 | 00:00 |
541 | 1.165294 | 0.700519 | 00:00 |
542 | 1.165136 | 0.696827 | 00:00 |
543 | 1.164980 | 0.704912 | 00:00 |
544 | 1.164823 | 0.702665 | 00:00 |
545 | 1.164667 | 0.705002 | 00:00 |
546 | 1.164510 | 0.705292 | 00:00 |
547 | 1.164352 | 0.705426 | 00:00 |
548 | 1.164195 | 0.703526 | 00:00 |
549 | 1.164039 | 0.706681 | 00:00 |
550 | 1.163882 | 0.702986 | 00:00 |
551 | 1.163726 | 0.706838 | 00:00 |
552 | 1.163571 | 0.705034 | 00:00 |
553 | 1.163417 | 0.702783 | 00:00 |
554 | 1.163262 | 0.707929 | 00:00 |
555 | 1.163108 | 0.702308 | 00:00 |
556 | 1.162954 | 0.715909 | 00:00 |
557 | 1.162799 | 0.708171 | 00:00 |
558 | 1.162646 | 0.717306 | 00:00 |
559 | 1.162492 | 0.714014 | 00:00 |
560 | 1.162339 | 0.715104 | 00:00 |
561 | 1.162187 | 0.717018 | 00:00 |
562 | 1.162035 | 0.719366 | 00:00 |
563 | 1.161883 | 0.715955 | 00:00 |
564 | 1.161731 | 0.725445 | 00:00 |
565 | 1.161581 | 0.717198 | 00:00 |
566 | 1.161430 | 0.724005 | 00:00 |
567 | 1.161279 | 0.714826 | 00:00 |
568 | 1.161129 | 0.718211 | 00:00 |
569 | 1.160977 | 0.722398 | 00:00 |
570 | 1.160827 | 0.725935 | 00:00 |
571 | 1.160676 | 0.731058 | 00:00 |
572 | 1.160526 | 0.728131 | 00:00 |
573 | 1.160377 | 0.730116 | 00:00 |
574 | 1.160228 | 0.725589 | 00:00 |
575 | 1.160080 | 0.725959 | 00:00 |
576 | 1.159930 | 0.728852 | 00:00 |
577 | 1.159782 | 0.726024 | 00:00 |
578 | 1.159634 | 0.739878 | 00:00 |
579 | 1.159488 | 0.723152 | 00:00 |
580 | 1.159343 | 0.748881 | 00:00 |
581 | 1.159199 | 0.721036 | 00:00 |
582 | 1.159055 | 0.748081 | 00:00 |
583 | 1.158910 | 0.732644 | 00:00 |
584 | 1.158765 | 0.734861 | 00:00 |
585 | 1.158618 | 0.749160 | 00:00 |
586 | 1.158474 | 0.728235 | 00:00 |
587 | 1.158330 | 0.743768 | 00:00 |
588 | 1.158188 | 0.740732 | 00:00 |
589 | 1.158044 | 0.733889 | 00:00 |
590 | 1.157901 | 0.755369 | 00:00 |
591 | 1.157759 | 0.742740 | 00:00 |
592 | 1.157615 | 0.749549 | 00:00 |
593 | 1.157473 | 0.752636 | 00:00 |
594 | 1.157331 | 0.740134 | 00:00 |
595 | 1.157189 | 0.753275 | 00:00 |
596 | 1.157047 | 0.747162 | 00:00 |
597 | 1.156906 | 0.750614 | 00:00 |
598 | 1.156764 | 0.758259 | 00:00 |
599 | 1.156624 | 0.750666 | 00:00 |
600 | 1.156483 | 0.758749 | 00:00 |
601 | 1.156342 | 0.753580 | 00:00 |
602 | 1.156203 | 0.752502 | 00:00 |
603 | 1.156063 | 0.757032 | 00:00 |
604 | 1.155924 | 0.752669 | 00:00 |
605 | 1.155786 | 0.764629 | 00:00 |
606 | 1.155646 | 0.757873 | 00:00 |
607 | 1.155509 | 0.768916 | 00:00 |
608 | 1.155371 | 0.764446 | 00:00 |
609 | 1.155233 | 0.763146 | 00:00 |
610 | 1.155096 | 0.767720 | 00:00 |
611 | 1.154959 | 0.759641 | 00:00 |
612 | 1.154823 | 0.764613 | 00:00 |
613 | 1.154687 | 0.761114 | 00:00 |
614 | 1.154552 | 0.760347 | 00:00 |
615 | 1.154416 | 0.767563 | 00:00 |
616 | 1.154282 | 0.763232 | 00:00 |
617 | 1.154147 | 0.775828 | 00:00 |
618 | 1.154013 | 0.765519 | 00:00 |
619 | 1.153878 | 0.778106 | 00:00 |
620 | 1.153745 | 0.765381 | 00:00 |
621 | 1.153611 | 0.775516 | 00:00 |
622 | 1.153476 | 0.770315 | 00:00 |
623 | 1.153342 | 0.773973 | 00:00 |
624 | 1.153209 | 0.777303 | 00:00 |
625 | 1.153076 | 0.768123 | 00:00 |
626 | 1.152944 | 0.785412 | 00:00 |
627 | 1.152812 | 0.770153 | 00:00 |
628 | 1.152681 | 0.784272 | 00:00 |
629 | 1.152551 | 0.771082 | 00:00 |
630 | 1.152421 | 0.778124 | 00:00 |
631 | 1.152291 | 0.779991 | 00:00 |
632 | 1.152160 | 0.773086 | 00:00 |
633 | 1.152030 | 0.788602 | 00:00 |
634 | 1.151901 | 0.776838 | 00:00 |
635 | 1.151773 | 0.791196 | 00:00 |
636 | 1.151643 | 0.785923 | 00:00 |
637 | 1.151514 | 0.783956 | 00:00 |
638 | 1.151385 | 0.791385 | 00:00 |
639 | 1.151256 | 0.782824 | 00:00 |
640 | 1.151128 | 0.790044 | 00:00 |
641 | 1.151002 | 0.784316 | 00:00 |
642 | 1.150874 | 0.786809 | 00:00 |
643 | 1.150746 | 0.796783 | 00:00 |
644 | 1.150617 | 0.785647 | 00:00 |
645 | 1.150491 | 0.801674 | 00:00 |
646 | 1.150366 | 0.787745 | 00:00 |
647 | 1.150242 | 0.795403 | 00:00 |
648 | 1.150117 | 0.795295 | 00:00 |
649 | 1.149991 | 0.784823 | 00:00 |
650 | 1.149867 | 0.803139 | 00:00 |
651 | 1.149742 | 0.781171 | 00:00 |
652 | 1.149617 | 0.807291 | 00:00 |
653 | 1.149495 | 0.792297 | 00:00 |
654 | 1.149372 | 0.802658 | 00:00 |
655 | 1.149248 | 0.803362 | 00:00 |
656 | 1.149126 | 0.790100 | 00:00 |
657 | 1.149003 | 0.807568 | 00:00 |
658 | 1.148881 | 0.792497 | 00:00 |
659 | 1.148759 | 0.800350 | 00:00 |
660 | 1.148636 | 0.803407 | 00:00 |
661 | 1.148515 | 0.795993 | 00:00 |
662 | 1.148394 | 0.817941 | 00:00 |
663 | 1.148273 | 0.798105 | 00:00 |
664 | 1.148154 | 0.816646 | 00:00 |
665 | 1.148033 | 0.802424 | 00:00 |
666 | 1.147914 | 0.804851 | 00:00 |
667 | 1.147795 | 0.810295 | 00:00 |
668 | 1.147676 | 0.800507 | 00:00 |
669 | 1.147555 | 0.813304 | 00:00 |
670 | 1.147435 | 0.806676 | 00:00 |
671 | 1.147316 | 0.816713 | 00:00 |
672 | 1.147198 | 0.811457 | 00:00 |
673 | 1.147081 | 0.815311 | 00:00 |
674 | 1.146963 | 0.808485 | 00:00 |
675 | 1.146846 | 0.819729 | 00:00 |
676 | 1.146728 | 0.807255 | 00:00 |
677 | 1.146613 | 0.816844 | 00:00 |
678 | 1.146498 | 0.811429 | 00:00 |
679 | 1.146381 | 0.810872 | 00:00 |
680 | 1.146264 | 0.819056 | 00:00 |
681 | 1.146149 | 0.809813 | 00:00 |
682 | 1.146033 | 0.818623 | 00:00 |
683 | 1.145918 | 0.812179 | 00:00 |
684 | 1.145803 | 0.814529 | 00:00 |
685 | 1.145690 | 0.816851 | 00:00 |
686 | 1.145576 | 0.819786 | 00:00 |
687 | 1.145463 | 0.814861 | 00:00 |
688 | 1.145348 | 0.823726 | 00:00 |
689 | 1.145233 | 0.821554 | 00:00 |
690 | 1.145119 | 0.824245 | 00:00 |
691 | 1.145006 | 0.824527 | 00:00 |
692 | 1.144896 | 0.824720 | 00:00 |
693 | 1.144784 | 0.822336 | 00:00 |
694 | 1.144672 | 0.823316 | 00:00 |
695 | 1.144560 | 0.822816 | 00:00 |
696 | 1.144448 | 0.823885 | 00:00 |
697 | 1.144337 | 0.827526 | 00:00 |
698 | 1.144226 | 0.827074 | 00:00 |
699 | 1.144117 | 0.828886 | 00:00 |
700 | 1.144007 | 0.824797 | 00:00 |
701 | 1.143897 | 0.833218 | 00:00 |
702 | 1.143788 | 0.817942 | 00:00 |
703 | 1.143679 | 0.836724 | 00:00 |
704 | 1.143571 | 0.812656 | 00:00 |
705 | 1.143463 | 0.849854 | 00:00 |
706 | 1.143359 | 0.810656 | 00:00 |
707 | 1.143257 | 0.854141 | 00:00 |
708 | 1.143152 | 0.830175 | 00:00 |
709 | 1.143044 | 0.828141 | 00:00 |
710 | 1.142938 | 0.844413 | 00:00 |
711 | 1.142832 | 0.815003 | 00:00 |
712 | 1.142727 | 0.834576 | 00:00 |
713 | 1.142621 | 0.836194 | 00:00 |
714 | 1.142513 | 0.825130 | 00:00 |
715 | 1.142407 | 0.849269 | 00:00 |
716 | 1.142303 | 0.837995 | 00:00 |
717 | 1.142198 | 0.834097 | 00:00 |
718 | 1.142092 | 0.851348 | 00:00 |
719 | 1.141989 | 0.825346 | 00:00 |
720 | 1.141885 | 0.838158 | 00:00 |
721 | 1.141781 | 0.849517 | 00:00 |
722 | 1.141678 | 0.827810 | 00:00 |
723 | 1.141577 | 0.851888 | 00:00 |
724 | 1.141473 | 0.850364 | 00:00 |
725 | 1.141370 | 0.831968 | 00:00 |
726 | 1.141267 | 0.850946 | 00:00 |
727 | 1.141165 | 0.834469 | 00:00 |
728 | 1.141063 | 0.834548 | 00:00 |
729 | 1.140960 | 0.844537 | 00:00 |
730 | 1.140859 | 0.838511 | 00:00 |
731 | 1.140757 | 0.838418 | 00:00 |
732 | 1.140657 | 0.852048 | 00:00 |
733 | 1.140556 | 0.839991 | 00:00 |
734 | 1.140456 | 0.848325 | 00:00 |
735 | 1.140355 | 0.857238 | 00:00 |
736 | 1.140253 | 0.841009 | 00:00 |
737 | 1.140154 | 0.855226 | 00:00 |
738 | 1.140055 | 0.844980 | 00:00 |
739 | 1.139957 | 0.840221 | 00:00 |
740 | 1.139859 | 0.855727 | 00:00 |
741 | 1.139762 | 0.842279 | 00:00 |
742 | 1.139663 | 0.848787 | 00:00 |
743 | 1.139566 | 0.854988 | 00:00 |
744 | 1.139468 | 0.846882 | 00:00 |
745 | 1.139369 | 0.854328 | 00:00 |
746 | 1.139271 | 0.852064 | 00:00 |
747 | 1.139177 | 0.845152 | 00:00 |
748 | 1.139079 | 0.858374 | 00:00 |
749 | 1.138984 | 0.842834 | 00:00 |
750 | 1.138889 | 0.854284 | 00:00 |
751 | 1.138794 | 0.852951 | 00:00 |
752 | 1.138697 | 0.850792 | 00:00 |
753 | 1.138601 | 0.862283 | 00:00 |
754 | 1.138506 | 0.855278 | 00:00 |
755 | 1.138409 | 0.861406 | 00:00 |
756 | 1.138315 | 0.859451 | 00:00 |
757 | 1.138220 | 0.848930 | 00:00 |
758 | 1.138127 | 0.861172 | 00:00 |
759 | 1.138033 | 0.842143 | 00:00 |
760 | 1.137938 | 0.860208 | 00:00 |
761 | 1.137843 | 0.851348 | 00:00 |
762 | 1.137750 | 0.855614 | 00:00 |
763 | 1.137658 | 0.862108 | 00:00 |
764 | 1.137565 | 0.857237 | 00:00 |
765 | 1.137471 | 0.860705 | 00:00 |
766 | 1.137379 | 0.862395 | 00:00 |
767 | 1.137284 | 0.852959 | 00:00 |
768 | 1.137190 | 0.863799 | 00:00 |
769 | 1.137097 | 0.852512 | 00:00 |
770 | 1.137005 | 0.860559 | 00:00 |
771 | 1.136913 | 0.862787 | 00:00 |
772 | 1.136818 | 0.862184 | 00:00 |
773 | 1.136727 | 0.874345 | 00:00 |
774 | 1.136635 | 0.863138 | 00:00 |
775 | 1.136543 | 0.870405 | 00:00 |
776 | 1.136450 | 0.859480 | 00:00 |
777 | 1.136358 | 0.856016 | 00:00 |
778 | 1.136266 | 0.865735 | 00:00 |
779 | 1.136175 | 0.850185 | 00:00 |
780 | 1.136086 | 0.875445 | 00:00 |
781 | 1.135996 | 0.857999 | 00:00 |
782 | 1.135905 | 0.880645 | 00:00 |
783 | 1.135815 | 0.867992 | 00:00 |
784 | 1.135727 | 0.874274 | 00:00 |
785 | 1.135636 | 0.867010 | 00:00 |
786 | 1.135545 | 0.856438 | 00:00 |
787 | 1.135453 | 0.872254 | 00:00 |
788 | 1.135364 | 0.858873 | 00:00 |
789 | 1.135273 | 0.877127 | 00:00 |
790 | 1.135183 | 0.876687 | 00:00 |
791 | 1.135092 | 0.869743 | 00:00 |
792 | 1.135001 | 0.886134 | 00:00 |
793 | 1.134910 | 0.861011 | 00:00 |
794 | 1.134818 | 0.882864 | 00:00 |
795 | 1.134729 | 0.867141 | 00:00 |
796 | 1.134641 | 0.871579 | 00:00 |
797 | 1.134550 | 0.878834 | 00:00 |
798 | 1.134459 | 0.866401 | 00:00 |
799 | 1.134368 | 0.874019 | 00:00 |
800 | 1.134279 | 0.873439 | 00:00 |
801 | 1.134187 | 0.864621 | 00:00 |
802 | 1.134096 | 0.877635 | 00:00 |
803 | 1.134006 | 0.863145 | 00:00 |
804 | 1.133914 | 0.869848 | 00:00 |
805 | 1.133825 | 0.868888 | 00:00 |
806 | 1.133735 | 0.860288 | 00:00 |
807 | 1.133644 | 0.872482 | 00:00 |
808 | 1.133556 | 0.859649 | 00:00 |
809 | 1.133467 | 0.875410 | 00:00 |
810 | 1.133379 | 0.859526 | 00:00 |
811 | 1.133289 | 0.866583 | 00:00 |
812 | 1.133200 | 0.875274 | 00:00 |
813 | 1.133112 | 0.865782 | 00:00 |
814 | 1.133026 | 0.882280 | 00:00 |
815 | 1.132937 | 0.862883 | 00:00 |
816 | 1.132849 | 0.869316 | 00:00 |
817 | 1.132760 | 0.864621 | 00:00 |
818 | 1.132671 | 0.863206 | 00:00 |
819 | 1.132582 | 0.868335 | 00:00 |
820 | 1.132496 | 0.865084 | 00:00 |
821 | 1.132410 | 0.871673 | 00:00 |
822 | 1.132323 | 0.870870 | 00:00 |
823 | 1.132235 | 0.866101 | 00:00 |
824 | 1.132150 | 0.871637 | 00:00 |
825 | 1.132066 | 0.857387 | 00:00 |
826 | 1.131981 | 0.872094 | 00:00 |
827 | 1.131896 | 0.854197 | 00:00 |
828 | 1.131810 | 0.874689 | 00:00 |
829 | 1.131725 | 0.858084 | 00:00 |
830 | 1.131641 | 0.878727 | 00:00 |
831 | 1.131557 | 0.858961 | 00:00 |
832 | 1.131472 | 0.869223 | 00:00 |
833 | 1.131385 | 0.857955 | 00:00 |
834 | 1.131299 | 0.856443 | 00:00 |
835 | 1.131215 | 0.870857 | 00:00 |
836 | 1.131129 | 0.854086 | 00:00 |
837 | 1.131045 | 0.877621 | 00:00 |
838 | 1.130964 | 0.850963 | 00:00 |
839 | 1.130883 | 0.873553 | 00:00 |
840 | 1.130799 | 0.858874 | 00:00 |
841 | 1.130715 | 0.865007 | 00:00 |
842 | 1.130631 | 0.868489 | 00:00 |
843 | 1.130548 | 0.849720 | 00:00 |
844 | 1.130464 | 0.877812 | 00:00 |
845 | 1.130384 | 0.845569 | 00:00 |
846 | 1.130304 | 0.867796 | 00:00 |
847 | 1.130223 | 0.857568 | 00:00 |
848 | 1.130142 | 0.850401 | 00:00 |
849 | 1.130058 | 0.868524 | 00:00 |
850 | 1.129977 | 0.851188 | 00:00 |
851 | 1.129895 | 0.860543 | 00:00 |
852 | 1.129814 | 0.859625 | 00:00 |
853 | 1.129733 | 0.852063 | 00:00 |
854 | 1.129652 | 0.862126 | 00:00 |
855 | 1.129571 | 0.857274 | 00:00 |
856 | 1.129491 | 0.856204 | 00:00 |
857 | 1.129414 | 0.860044 | 00:00 |
858 | 1.129334 | 0.852196 | 00:00 |
859 | 1.129254 | 0.852517 | 00:00 |
860 | 1.129175 | 0.859008 | 00:00 |
861 | 1.129093 | 0.848962 | 00:00 |
862 | 1.129014 | 0.862057 | 00:00 |
863 | 1.128937 | 0.856752 | 00:00 |
864 | 1.128860 | 0.860548 | 00:00 |
865 | 1.128780 | 0.856671 | 00:00 |
866 | 1.128701 | 0.859483 | 00:00 |
867 | 1.128622 | 0.857231 | 00:00 |
868 | 1.128543 | 0.857547 | 00:00 |
869 | 1.128464 | 0.858504 | 00:00 |
870 | 1.128385 | 0.852302 | 00:00 |
871 | 1.128308 | 0.857933 | 00:00 |
872 | 1.128230 | 0.853803 | 00:00 |
873 | 1.128152 | 0.861099 | 00:00 |
874 | 1.128077 | 0.854009 | 00:00 |
875 | 1.128002 | 0.853797 | 00:00 |
876 | 1.127927 | 0.855231 | 00:00 |
877 | 1.127850 | 0.856125 | 00:00 |
878 | 1.127773 | 0.850268 | 00:00 |
879 | 1.127695 | 0.855963 | 00:00 |
880 | 1.127620 | 0.842745 | 00:00 |
881 | 1.127546 | 0.861058 | 00:00 |
882 | 1.127473 | 0.843062 | 00:00 |
883 | 1.127399 | 0.873071 | 00:00 |
884 | 1.127325 | 0.844815 | 00:00 |
885 | 1.127250 | 0.862693 | 00:00 |
886 | 1.127175 | 0.841935 | 00:00 |
887 | 1.127101 | 0.857481 | 00:00 |
888 | 1.127027 | 0.854944 | 00:00 |
889 | 1.126954 | 0.856011 | 00:00 |
890 | 1.126882 | 0.865382 | 00:00 |
891 | 1.126809 | 0.840762 | 00:00 |
892 | 1.126737 | 0.860966 | 00:00 |
893 | 1.126665 | 0.834126 | 00:00 |
894 | 1.126592 | 0.862016 | 00:00 |
895 | 1.126519 | 0.842175 | 00:00 |
896 | 1.126447 | 0.852582 | 00:00 |
897 | 1.126375 | 0.850875 | 00:00 |
898 | 1.126302 | 0.846766 | 00:00 |
899 | 1.126230 | 0.847914 | 00:00 |
900 | 1.126158 | 0.849131 | 00:00 |
901 | 1.126084 | 0.842236 | 00:00 |
902 | 1.126012 | 0.853580 | 00:00 |
903 | 1.125940 | 0.851032 | 00:00 |
904 | 1.125868 | 0.847052 | 00:00 |
905 | 1.125799 | 0.854457 | 00:00 |
906 | 1.125730 | 0.838350 | 00:00 |
907 | 1.125659 | 0.852468 | 00:00 |
908 | 1.125588 | 0.842107 | 00:00 |
909 | 1.125518 | 0.845545 | 00:00 |
910 | 1.125445 | 0.854992 | 00:00 |
911 | 1.125373 | 0.835331 | 00:00 |
912 | 1.125305 | 0.858842 | 00:00 |
913 | 1.125235 | 0.831471 | 00:00 |
914 | 1.125166 | 0.854235 | 00:00 |
915 | 1.125098 | 0.841904 | 00:00 |
916 | 1.125027 | 0.838347 | 00:00 |
917 | 1.124954 | 0.853982 | 00:00 |
918 | 1.124886 | 0.835227 | 00:00 |
919 | 1.124818 | 0.853135 | 00:00 |
920 | 1.124750 | 0.848524 | 00:00 |
921 | 1.124680 | 0.837705 | 00:00 |
922 | 1.124611 | 0.855274 | 00:00 |
923 | 1.124544 | 0.832801 | 00:00 |
924 | 1.124477 | 0.843624 | 00:00 |
925 | 1.124409 | 0.847890 | 00:00 |
926 | 1.124341 | 0.835778 | 00:00 |
927 | 1.124276 | 0.857396 | 00:00 |
928 | 1.124209 | 0.832616 | 00:00 |
929 | 1.124142 | 0.845207 | 00:00 |
930 | 1.124075 | 0.845729 | 00:00 |
931 | 1.124009 | 0.828168 | 00:00 |
932 | 1.123945 | 0.859107 | 00:00 |
933 | 1.123882 | 0.824592 | 00:00 |
934 | 1.123817 | 0.849279 | 00:00 |
935 | 1.123752 | 0.845720 | 00:00 |
936 | 1.123686 | 0.830553 | 00:00 |
937 | 1.123620 | 0.854023 | 00:00 |
938 | 1.123554 | 0.837677 | 00:00 |
939 | 1.123488 | 0.837597 | 00:00 |
940 | 1.123421 | 0.850289 | 00:00 |
941 | 1.123356 | 0.826232 | 00:00 |
942 | 1.123292 | 0.837933 | 00:00 |
943 | 1.123227 | 0.838509 | 00:00 |
944 | 1.123162 | 0.823643 | 00:00 |
945 | 1.123097 | 0.849781 | 00:00 |
946 | 1.123033 | 0.834404 | 00:00 |
947 | 1.122969 | 0.838214 | 00:00 |
948 | 1.122903 | 0.845169 | 00:00 |
949 | 1.122836 | 0.834216 | 00:00 |
950 | 1.122768 | 0.840391 | 00:00 |
951 | 1.122702 | 0.842047 | 00:00 |
952 | 1.122634 | 0.824440 | 00:00 |
953 | 1.122571 | 0.839786 | 00:00 |
954 | 1.122505 | 0.835064 | 00:00 |
955 | 1.122437 | 0.833512 | 00:00 |
956 | 1.122373 | 0.842443 | 00:00 |
957 | 1.122309 | 0.835471 | 00:00 |
958 | 1.122245 | 0.833878 | 00:00 |
959 | 1.122179 | 0.842228 | 00:00 |
960 | 1.122113 | 0.825596 | 00:00 |
961 | 1.122049 | 0.828197 | 00:00 |
962 | 1.121987 | 0.835179 | 00:00 |
963 | 1.121922 | 0.827421 | 00:00 |
964 | 1.121859 | 0.835130 | 00:00 |
965 | 1.121795 | 0.829856 | 00:00 |
966 | 1.121730 | 0.818251 | 00:00 |
967 | 1.121667 | 0.826072 | 00:00 |
968 | 1.121604 | 0.806622 | 00:00 |
969 | 1.121539 | 0.830709 | 00:00 |
970 | 1.121477 | 0.822611 | 00:00 |
971 | 1.121415 | 0.829838 | 00:00 |
972 | 1.121353 | 0.838813 | 00:00 |
973 | 1.121290 | 0.817203 | 00:00 |
974 | 1.121227 | 0.827864 | 00:00 |
975 | 1.121164 | 0.819673 | 00:00 |
976 | 1.121101 | 0.817444 | 00:00 |
977 | 1.121041 | 0.831273 | 00:00 |
978 | 1.120979 | 0.815416 | 00:00 |
979 | 1.120918 | 0.831825 | 00:00 |
980 | 1.120857 | 0.818962 | 00:00 |
981 | 1.120794 | 0.823118 | 00:00 |
982 | 1.120731 | 0.819802 | 00:00 |
983 | 1.120669 | 0.814412 | 00:00 |
984 | 1.120608 | 0.831845 | 00:00 |
985 | 1.120547 | 0.805859 | 00:00 |
986 | 1.120486 | 0.831398 | 00:00 |
987 | 1.120425 | 0.810652 | 00:00 |
988 | 1.120365 | 0.820052 | 00:00 |
989 | 1.120303 | 0.821582 | 00:00 |
990 | 1.120243 | 0.799644 | 00:00 |
991 | 1.120182 | 0.831146 | 00:00 |
992 | 1.120124 | 0.813301 | 00:00 |
993 | 1.120062 | 0.819145 | 00:00 |
994 | 1.120003 | 0.827779 | 00:00 |
995 | 1.119942 | 0.808695 | 00:00 |
996 | 1.119880 | 0.816911 | 00:00 |
997 | 1.119822 | 0.814241 | 00:00 |
998 | 1.119760 | 0.796303 | 00:00 |
999 | 1.119699 | 0.822363 | 00:00 |
-
loss들도 에폭별로 기록되어 있음
lrnr.recorder.plot_loss()
-
net_fastai에도 파라메터가 업데이트 되어있음
# list(net_fastai.parameters())
- 리스트를 확인해보면 net_fastai 의 파라메터가 알아서 GPU로 옮겨져서 학습됨.
-
플랏
net_fastai.to("cpu") # net_fastai 의 파라메터가 알아서 GPU로 옮겨져서 학습되기 때문에 CPU로 옮기기 위해 필요한 옵션
plt.plot(X,y,'.')
plt.plot(X_tr,net_fastai(X_tr).data)
plt.plot(X_val,net_fastai(X_val).data)
[<matplotlib.lines.Line2D at 0x7fb55d2b4e50>]
-
네트워크 설계 (드랍아웃 추가)
torch.manual_seed(1)
net_fastai = torch.nn.Sequential(
torch.nn.Linear(in_features=1, out_features=512),
torch.nn.ReLU(),
torch.nn.Dropout(0.8),
torch.nn.Linear(in_features=512, out_features=1))
#optimizer
loss_fn=torch.nn.MSELoss()
-
러너오브젝트 (for문 대신돌려주는 오브젝트)
lrnr= Learner(dls,net_fastai,opt_func=Adam,loss_func=loss_fn)
-
에폭만 설정하고 바로 학습
lrnr.fit(1000)
epoch | train_loss | valid_loss | time |
---|---|---|---|
0 | 1.585653 | 0.428918 | 00:00 |
1 | 1.552326 | 0.434847 | 00:00 |
2 | 1.568810 | 0.442775 | 00:00 |
3 | 1.543528 | 0.449585 | 00:00 |
4 | 1.562597 | 0.456666 | 00:00 |
5 | 1.523623 | 0.459943 | 00:00 |
6 | 1.506816 | 0.458130 | 00:00 |
7 | 1.510407 | 0.455353 | 00:00 |
8 | 1.532602 | 0.449054 | 00:00 |
9 | 1.528153 | 0.445443 | 00:00 |
10 | 1.518390 | 0.442207 | 00:00 |
11 | 1.508012 | 0.442086 | 00:00 |
12 | 1.498026 | 0.443293 | 00:00 |
13 | 1.502874 | 0.444508 | 00:00 |
14 | 1.502828 | 0.445713 | 00:00 |
15 | 1.496831 | 0.446047 | 00:00 |
16 | 1.483070 | 0.447462 | 00:00 |
17 | 1.496551 | 0.449803 | 00:00 |
18 | 1.482904 | 0.450663 | 00:00 |
19 | 1.471269 | 0.453689 | 00:00 |
20 | 1.467480 | 0.456816 | 00:00 |
21 | 1.457825 | 0.460537 | 00:00 |
22 | 1.450724 | 0.463197 | 00:00 |
23 | 1.445010 | 0.466199 | 00:00 |
24 | 1.441184 | 0.471516 | 00:00 |
25 | 1.436977 | 0.474600 | 00:00 |
26 | 1.431098 | 0.476256 | 00:00 |
27 | 1.423327 | 0.478671 | 00:00 |
28 | 1.416092 | 0.479825 | 00:00 |
29 | 1.414993 | 0.478338 | 00:00 |
30 | 1.421260 | 0.477377 | 00:00 |
31 | 1.413346 | 0.474661 | 00:00 |
32 | 1.417670 | 0.470384 | 00:00 |
33 | 1.412011 | 0.468277 | 00:00 |
34 | 1.414570 | 0.465151 | 00:00 |
35 | 1.416442 | 0.461778 | 00:00 |
36 | 1.410454 | 0.457763 | 00:00 |
37 | 1.405844 | 0.453920 | 00:00 |
38 | 1.405701 | 0.451884 | 00:00 |
39 | 1.405358 | 0.450063 | 00:00 |
40 | 1.402212 | 0.449002 | 00:00 |
41 | 1.403139 | 0.450332 | 00:00 |
42 | 1.403911 | 0.450523 | 00:00 |
43 | 1.397601 | 0.453861 | 00:00 |
44 | 1.399249 | 0.456292 | 00:00 |
45 | 1.395007 | 0.460009 | 00:00 |
46 | 1.391067 | 0.464119 | 00:00 |
47 | 1.387260 | 0.471901 | 00:00 |
48 | 1.390660 | 0.477963 | 00:00 |
49 | 1.391881 | 0.484811 | 00:00 |
50 | 1.390658 | 0.491122 | 00:00 |
51 | 1.390670 | 0.495993 | 00:00 |
52 | 1.391075 | 0.500303 | 00:00 |
53 | 1.392950 | 0.502622 | 00:00 |
54 | 1.394412 | 0.507396 | 00:00 |
55 | 1.393165 | 0.511561 | 00:00 |
56 | 1.392622 | 0.511535 | 00:00 |
57 | 1.388416 | 0.510609 | 00:00 |
58 | 1.389699 | 0.505468 | 00:00 |
59 | 1.388712 | 0.501358 | 00:00 |
60 | 1.390845 | 0.492997 | 00:00 |
61 | 1.389794 | 0.485515 | 00:00 |
62 | 1.388309 | 0.479284 | 00:00 |
63 | 1.385704 | 0.473244 | 00:00 |
64 | 1.381632 | 0.470747 | 00:00 |
65 | 1.379893 | 0.468668 | 00:00 |
66 | 1.377810 | 0.466918 | 00:00 |
67 | 1.373863 | 0.466845 | 00:00 |
68 | 1.373379 | 0.467098 | 00:00 |
69 | 1.373236 | 0.469636 | 00:00 |
70 | 1.371915 | 0.471154 | 00:00 |
71 | 1.374786 | 0.473317 | 00:00 |
72 | 1.375253 | 0.477512 | 00:00 |
73 | 1.373598 | 0.482235 | 00:00 |
74 | 1.370517 | 0.486834 | 00:00 |
75 | 1.368542 | 0.490196 | 00:00 |
76 | 1.366800 | 0.491323 | 00:00 |
77 | 1.365475 | 0.493006 | 00:00 |
78 | 1.364186 | 0.492660 | 00:00 |
79 | 1.362411 | 0.491747 | 00:00 |
80 | 1.363654 | 0.490545 | 00:00 |
81 | 1.364647 | 0.486906 | 00:00 |
82 | 1.363840 | 0.484328 | 00:00 |
83 | 1.360841 | 0.483667 | 00:00 |
84 | 1.357780 | 0.482602 | 00:00 |
85 | 1.354387 | 0.482341 | 00:00 |
86 | 1.354743 | 0.480979 | 00:00 |
87 | 1.352487 | 0.480230 | 00:00 |
88 | 1.350849 | 0.480385 | 00:00 |
89 | 1.347193 | 0.481687 | 00:00 |
90 | 1.348292 | 0.482973 | 00:00 |
91 | 1.348094 | 0.484509 | 00:00 |
92 | 1.349150 | 0.485363 | 00:00 |
93 | 1.347975 | 0.486710 | 00:00 |
94 | 1.348030 | 0.487450 | 00:00 |
95 | 1.347020 | 0.487784 | 00:00 |
96 | 1.347151 | 0.488630 | 00:00 |
97 | 1.346722 | 0.488376 | 00:00 |
98 | 1.346411 | 0.488689 | 00:00 |
99 | 1.344513 | 0.487410 | 00:00 |
100 | 1.342907 | 0.484405 | 00:00 |
101 | 1.342781 | 0.481908 | 00:00 |
102 | 1.341346 | 0.479483 | 00:00 |
103 | 1.341766 | 0.476325 | 00:00 |
104 | 1.342350 | 0.473111 | 00:00 |
105 | 1.340649 | 0.469765 | 00:00 |
106 | 1.338788 | 0.466547 | 00:00 |
107 | 1.337696 | 0.463014 | 00:00 |
108 | 1.336147 | 0.461034 | 00:00 |
109 | 1.335183 | 0.460860 | 00:00 |
110 | 1.335003 | 0.460619 | 00:00 |
111 | 1.333602 | 0.460446 | 00:00 |
112 | 1.332649 | 0.459486 | 00:00 |
113 | 1.332114 | 0.458578 | 00:00 |
114 | 1.331092 | 0.458250 | 00:00 |
115 | 1.331056 | 0.457596 | 00:00 |
116 | 1.329442 | 0.457309 | 00:00 |
117 | 1.329175 | 0.458242 | 00:00 |
118 | 1.328749 | 0.459083 | 00:00 |
119 | 1.328132 | 0.459782 | 00:00 |
120 | 1.327027 | 0.460422 | 00:00 |
121 | 1.324988 | 0.461527 | 00:00 |
122 | 1.325732 | 0.463066 | 00:00 |
123 | 1.324014 | 0.464978 | 00:00 |
124 | 1.324666 | 0.467041 | 00:00 |
125 | 1.323317 | 0.467265 | 00:00 |
126 | 1.321263 | 0.467545 | 00:00 |
127 | 1.321853 | 0.467662 | 00:00 |
128 | 1.319355 | 0.468605 | 00:00 |
129 | 1.318295 | 0.468820 | 00:00 |
130 | 1.319102 | 0.469376 | 00:00 |
131 | 1.318805 | 0.469254 | 00:00 |
132 | 1.319239 | 0.468340 | 00:00 |
133 | 1.319683 | 0.467812 | 00:00 |
134 | 1.319690 | 0.467858 | 00:00 |
135 | 1.318426 | 0.467048 | 00:00 |
136 | 1.318110 | 0.466006 | 00:00 |
137 | 1.319230 | 0.463519 | 00:00 |
138 | 1.319114 | 0.460127 | 00:00 |
139 | 1.317928 | 0.457015 | 00:00 |
140 | 1.317385 | 0.454293 | 00:00 |
141 | 1.317326 | 0.451691 | 00:00 |
142 | 1.314811 | 0.450089 | 00:00 |
143 | 1.314483 | 0.448852 | 00:00 |
144 | 1.314360 | 0.448222 | 00:00 |
145 | 1.312964 | 0.447670 | 00:00 |
146 | 1.312360 | 0.447532 | 00:00 |
147 | 1.310587 | 0.447214 | 00:00 |
148 | 1.311691 | 0.446320 | 00:00 |
149 | 1.309161 | 0.445114 | 00:00 |
150 | 1.308689 | 0.443989 | 00:00 |
151 | 1.309653 | 0.444138 | 00:00 |
152 | 1.308728 | 0.444494 | 00:00 |
153 | 1.309734 | 0.446063 | 00:00 |
154 | 1.309190 | 0.447512 | 00:00 |
155 | 1.310401 | 0.448599 | 00:00 |
156 | 1.310624 | 0.449229 | 00:00 |
157 | 1.311330 | 0.450947 | 00:00 |
158 | 1.311746 | 0.452629 | 00:00 |
159 | 1.311103 | 0.454649 | 00:00 |
160 | 1.310514 | 0.455947 | 00:00 |
161 | 1.311919 | 0.455855 | 00:00 |
162 | 1.312855 | 0.454663 | 00:00 |
163 | 1.313068 | 0.454679 | 00:00 |
164 | 1.311808 | 0.454553 | 00:00 |
165 | 1.310780 | 0.455134 | 00:00 |
166 | 1.310750 | 0.455700 | 00:00 |
167 | 1.310130 | 0.456383 | 00:00 |
168 | 1.310500 | 0.457561 | 00:00 |
169 | 1.308649 | 0.458673 | 00:00 |
170 | 1.307447 | 0.458367 | 00:00 |
171 | 1.306209 | 0.458763 | 00:00 |
172 | 1.306656 | 0.459128 | 00:00 |
173 | 1.305704 | 0.459041 | 00:00 |
174 | 1.305946 | 0.458394 | 00:00 |
175 | 1.305129 | 0.457962 | 00:00 |
176 | 1.305812 | 0.457666 | 00:00 |
177 | 1.304454 | 0.456104 | 00:00 |
178 | 1.304170 | 0.454566 | 00:00 |
179 | 1.303862 | 0.452822 | 00:00 |
180 | 1.303646 | 0.450847 | 00:00 |
181 | 1.304117 | 0.449994 | 00:00 |
182 | 1.306056 | 0.450307 | 00:00 |
183 | 1.306082 | 0.451494 | 00:00 |
184 | 1.306572 | 0.453412 | 00:00 |
185 | 1.307314 | 0.454422 | 00:00 |
186 | 1.307979 | 0.455199 | 00:00 |
187 | 1.308226 | 0.455547 | 00:00 |
188 | 1.307733 | 0.454574 | 00:00 |
189 | 1.306858 | 0.452864 | 00:00 |
190 | 1.306951 | 0.451127 | 00:00 |
191 | 1.307191 | 0.448808 | 00:00 |
192 | 1.306900 | 0.447166 | 00:00 |
193 | 1.306474 | 0.445834 | 00:00 |
194 | 1.306583 | 0.444366 | 00:00 |
195 | 1.305671 | 0.443542 | 00:00 |
196 | 1.305142 | 0.442452 | 00:00 |
197 | 1.305861 | 0.442109 | 00:00 |
198 | 1.305953 | 0.442021 | 00:00 |
199 | 1.306188 | 0.443077 | 00:00 |
200 | 1.305721 | 0.444788 | 00:00 |
201 | 1.304766 | 0.447121 | 00:00 |
202 | 1.304900 | 0.449354 | 00:00 |
203 | 1.304817 | 0.451541 | 00:00 |
204 | 1.303382 | 0.454298 | 00:00 |
205 | 1.303250 | 0.456598 | 00:00 |
206 | 1.301602 | 0.458440 | 00:00 |
207 | 1.300826 | 0.460150 | 00:00 |
208 | 1.300216 | 0.461308 | 00:00 |
209 | 1.299984 | 0.461123 | 00:00 |
210 | 1.299863 | 0.460487 | 00:00 |
211 | 1.299613 | 0.460139 | 00:00 |
212 | 1.298146 | 0.458774 | 00:00 |
213 | 1.297861 | 0.457811 | 00:00 |
214 | 1.297246 | 0.457534 | 00:00 |
215 | 1.297409 | 0.457475 | 00:00 |
216 | 1.296456 | 0.457476 | 00:00 |
217 | 1.295171 | 0.457737 | 00:00 |
218 | 1.294975 | 0.457871 | 00:00 |
219 | 1.295359 | 0.458105 | 00:00 |
220 | 1.295160 | 0.458282 | 00:00 |
221 | 1.295172 | 0.458718 | 00:00 |
222 | 1.294700 | 0.458999 | 00:00 |
223 | 1.294092 | 0.459598 | 00:00 |
224 | 1.294339 | 0.459741 | 00:00 |
225 | 1.294004 | 0.460016 | 00:00 |
226 | 1.293507 | 0.460292 | 00:00 |
227 | 1.293260 | 0.459921 | 00:00 |
228 | 1.293112 | 0.460055 | 00:00 |
229 | 1.293474 | 0.461999 | 00:00 |
230 | 1.293883 | 0.463124 | 00:00 |
231 | 1.293101 | 0.463190 | 00:00 |
232 | 1.294397 | 0.460957 | 00:00 |
233 | 1.293472 | 0.458565 | 00:00 |
234 | 1.292968 | 0.456207 | 00:00 |
235 | 1.291682 | 0.453659 | 00:00 |
236 | 1.290647 | 0.450835 | 00:00 |
237 | 1.290733 | 0.448873 | 00:00 |
238 | 1.291057 | 0.448236 | 00:00 |
239 | 1.291047 | 0.448282 | 00:00 |
240 | 1.290197 | 0.448316 | 00:00 |
241 | 1.290132 | 0.447261 | 00:00 |
242 | 1.290471 | 0.447169 | 00:00 |
243 | 1.290599 | 0.447863 | 00:00 |
244 | 1.291709 | 0.449088 | 00:00 |
245 | 1.291516 | 0.449997 | 00:00 |
246 | 1.292218 | 0.451673 | 00:00 |
247 | 1.292811 | 0.453689 | 00:00 |
248 | 1.291822 | 0.456328 | 00:00 |
249 | 1.290429 | 0.458569 | 00:00 |
250 | 1.289345 | 0.460122 | 00:00 |
251 | 1.289098 | 0.461364 | 00:00 |
252 | 1.288902 | 0.462557 | 00:00 |
253 | 1.288983 | 0.464226 | 00:00 |
254 | 1.289074 | 0.463428 | 00:00 |
255 | 1.290115 | 0.461235 | 00:00 |
256 | 1.288825 | 0.460264 | 00:00 |
257 | 1.288778 | 0.458635 | 00:00 |
258 | 1.288438 | 0.457022 | 00:00 |
259 | 1.287207 | 0.455116 | 00:00 |
260 | 1.287102 | 0.452730 | 00:00 |
261 | 1.287056 | 0.449386 | 00:00 |
262 | 1.286713 | 0.446976 | 00:00 |
263 | 1.286046 | 0.445370 | 00:00 |
264 | 1.285581 | 0.444116 | 00:00 |
265 | 1.284314 | 0.442950 | 00:00 |
266 | 1.283907 | 0.442153 | 00:00 |
267 | 1.283924 | 0.441795 | 00:00 |
268 | 1.283110 | 0.441905 | 00:00 |
269 | 1.283586 | 0.442992 | 00:00 |
270 | 1.282754 | 0.445599 | 00:00 |
271 | 1.283452 | 0.448076 | 00:00 |
272 | 1.282526 | 0.449792 | 00:00 |
273 | 1.281680 | 0.451994 | 00:00 |
274 | 1.281593 | 0.453522 | 00:00 |
275 | 1.282210 | 0.454511 | 00:00 |
276 | 1.281355 | 0.455418 | 00:00 |
277 | 1.281241 | 0.457158 | 00:00 |
278 | 1.282607 | 0.459756 | 00:00 |
279 | 1.281338 | 0.462545 | 00:00 |
280 | 1.280468 | 0.463479 | 00:00 |
281 | 1.281324 | 0.464576 | 00:00 |
282 | 1.280025 | 0.465785 | 00:00 |
283 | 1.279208 | 0.466272 | 00:00 |
284 | 1.278496 | 0.465768 | 00:00 |
285 | 1.278628 | 0.464549 | 00:00 |
286 | 1.277772 | 0.462399 | 00:00 |
287 | 1.278443 | 0.458362 | 00:00 |
288 | 1.277341 | 0.453748 | 00:00 |
289 | 1.276036 | 0.449766 | 00:00 |
290 | 1.276149 | 0.447136 | 00:00 |
291 | 1.277113 | 0.444921 | 00:00 |
292 | 1.277600 | 0.442339 | 00:00 |
293 | 1.278381 | 0.440815 | 00:00 |
294 | 1.278246 | 0.440260 | 00:00 |
295 | 1.277780 | 0.440208 | 00:00 |
296 | 1.279099 | 0.441141 | 00:00 |
297 | 1.279046 | 0.442381 | 00:00 |
298 | 1.279273 | 0.444180 | 00:00 |
299 | 1.278437 | 0.445275 | 00:00 |
300 | 1.278135 | 0.446150 | 00:00 |
301 | 1.277237 | 0.446983 | 00:00 |
302 | 1.275967 | 0.447600 | 00:00 |
303 | 1.274674 | 0.448527 | 00:00 |
304 | 1.275023 | 0.448984 | 00:00 |
305 | 1.273725 | 0.449964 | 00:00 |
306 | 1.274757 | 0.450914 | 00:00 |
307 | 1.275644 | 0.451354 | 00:00 |
308 | 1.275411 | 0.450634 | 00:00 |
309 | 1.273249 | 0.449823 | 00:00 |
310 | 1.272668 | 0.447905 | 00:00 |
311 | 1.273006 | 0.446382 | 00:00 |
312 | 1.273046 | 0.445369 | 00:00 |
313 | 1.273439 | 0.444805 | 00:00 |
314 | 1.273946 | 0.444691 | 00:00 |
315 | 1.274406 | 0.444853 | 00:00 |
316 | 1.275469 | 0.446319 | 00:00 |
317 | 1.276744 | 0.447802 | 00:00 |
318 | 1.276363 | 0.449279 | 00:00 |
319 | 1.275606 | 0.448045 | 00:00 |
320 | 1.276366 | 0.448368 | 00:00 |
321 | 1.276815 | 0.449496 | 00:00 |
322 | 1.276668 | 0.450450 | 00:00 |
323 | 1.277383 | 0.451422 | 00:00 |
324 | 1.276904 | 0.451118 | 00:00 |
325 | 1.276425 | 0.449853 | 00:00 |
326 | 1.275550 | 0.449960 | 00:00 |
327 | 1.275084 | 0.450510 | 00:00 |
328 | 1.274734 | 0.451224 | 00:00 |
329 | 1.273820 | 0.451804 | 00:00 |
330 | 1.273242 | 0.453382 | 00:00 |
331 | 1.274745 | 0.453503 | 00:00 |
332 | 1.274718 | 0.454331 | 00:00 |
333 | 1.275229 | 0.454266 | 00:00 |
334 | 1.274459 | 0.453185 | 00:00 |
335 | 1.275524 | 0.451685 | 00:00 |
336 | 1.275901 | 0.450501 | 00:00 |
337 | 1.275864 | 0.448206 | 00:00 |
338 | 1.276275 | 0.445659 | 00:00 |
339 | 1.276007 | 0.442874 | 00:00 |
340 | 1.275419 | 0.440244 | 00:00 |
341 | 1.276131 | 0.439074 | 00:00 |
342 | 1.275977 | 0.439107 | 00:00 |
343 | 1.276573 | 0.440056 | 00:00 |
344 | 1.276013 | 0.441976 | 00:00 |
345 | 1.275782 | 0.443747 | 00:00 |
346 | 1.276260 | 0.444530 | 00:00 |
347 | 1.277219 | 0.445925 | 00:00 |
348 | 1.276955 | 0.448013 | 00:00 |
349 | 1.277579 | 0.449128 | 00:00 |
350 | 1.278119 | 0.450851 | 00:00 |
351 | 1.277229 | 0.451777 | 00:00 |
352 | 1.276578 | 0.453030 | 00:00 |
353 | 1.275589 | 0.455285 | 00:00 |
354 | 1.274477 | 0.455830 | 00:00 |
355 | 1.274144 | 0.454764 | 00:00 |
356 | 1.274702 | 0.453221 | 00:00 |
357 | 1.275626 | 0.451963 | 00:00 |
358 | 1.274649 | 0.450428 | 00:00 |
359 | 1.274770 | 0.448316 | 00:00 |
360 | 1.273907 | 0.446554 | 00:00 |
361 | 1.273655 | 0.445934 | 00:00 |
362 | 1.274049 | 0.444397 | 00:00 |
363 | 1.273154 | 0.444631 | 00:00 |
364 | 1.273079 | 0.444490 | 00:00 |
365 | 1.273550 | 0.444211 | 00:00 |
366 | 1.273258 | 0.443906 | 00:00 |
367 | 1.272076 | 0.444242 | 00:00 |
368 | 1.272527 | 0.443567 | 00:00 |
369 | 1.272371 | 0.441951 | 00:00 |
370 | 1.271729 | 0.441208 | 00:00 |
371 | 1.272237 | 0.440633 | 00:00 |
372 | 1.272789 | 0.439714 | 00:00 |
373 | 1.271987 | 0.440197 | 00:00 |
374 | 1.271441 | 0.440779 | 00:00 |
375 | 1.272091 | 0.442054 | 00:00 |
376 | 1.272142 | 0.443541 | 00:00 |
377 | 1.272309 | 0.444584 | 00:00 |
378 | 1.272576 | 0.445007 | 00:00 |
379 | 1.271549 | 0.446067 | 00:00 |
380 | 1.272343 | 0.447739 | 00:00 |
381 | 1.273062 | 0.449915 | 00:00 |
382 | 1.271915 | 0.451558 | 00:00 |
383 | 1.272956 | 0.451587 | 00:00 |
384 | 1.273209 | 0.450780 | 00:00 |
385 | 1.273339 | 0.448905 | 00:00 |
386 | 1.273637 | 0.447097 | 00:00 |
387 | 1.272406 | 0.445148 | 00:00 |
388 | 1.273209 | 0.442759 | 00:00 |
389 | 1.273337 | 0.441212 | 00:00 |
390 | 1.272793 | 0.439405 | 00:00 |
391 | 1.272642 | 0.438002 | 00:00 |
392 | 1.273211 | 0.437436 | 00:00 |
393 | 1.272137 | 0.437576 | 00:00 |
394 | 1.272994 | 0.437660 | 00:00 |
395 | 1.273848 | 0.438264 | 00:00 |
396 | 1.274981 | 0.439082 | 00:00 |
397 | 1.274626 | 0.439662 | 00:00 |
398 | 1.274112 | 0.440225 | 00:00 |
399 | 1.275283 | 0.439928 | 00:00 |
400 | 1.274686 | 0.440200 | 00:00 |
401 | 1.273702 | 0.439983 | 00:00 |
402 | 1.273237 | 0.438900 | 00:00 |
403 | 1.274384 | 0.438169 | 00:00 |
404 | 1.273538 | 0.437765 | 00:00 |
405 | 1.273626 | 0.437323 | 00:00 |
406 | 1.274259 | 0.436330 | 00:00 |
407 | 1.273777 | 0.435359 | 00:00 |
408 | 1.274179 | 0.434383 | 00:00 |
409 | 1.273506 | 0.433803 | 00:00 |
410 | 1.272781 | 0.433587 | 00:00 |
411 | 1.272514 | 0.433153 | 00:00 |
412 | 1.272213 | 0.433683 | 00:00 |
413 | 1.272278 | 0.432541 | 00:00 |
414 | 1.270988 | 0.430734 | 00:00 |
415 | 1.272043 | 0.430005 | 00:00 |
416 | 1.272091 | 0.429156 | 00:00 |
417 | 1.272826 | 0.428830 | 00:00 |
418 | 1.275164 | 0.429389 | 00:00 |
419 | 1.275089 | 0.430739 | 00:00 |
420 | 1.275098 | 0.432331 | 00:00 |
421 | 1.275988 | 0.434281 | 00:00 |
422 | 1.277132 | 0.436318 | 00:00 |
423 | 1.276635 | 0.437074 | 00:00 |
424 | 1.277540 | 0.438567 | 00:00 |
425 | 1.278446 | 0.439168 | 00:00 |
426 | 1.278217 | 0.440007 | 00:00 |
427 | 1.277427 | 0.440434 | 00:00 |
428 | 1.277897 | 0.440567 | 00:00 |
429 | 1.277016 | 0.440946 | 00:00 |
430 | 1.277213 | 0.440619 | 00:00 |
431 | 1.277058 | 0.440119 | 00:00 |
432 | 1.277163 | 0.439020 | 00:00 |
433 | 1.275971 | 0.438113 | 00:00 |
434 | 1.276133 | 0.438139 | 00:00 |
435 | 1.276162 | 0.438535 | 00:00 |
436 | 1.276245 | 0.439054 | 00:00 |
437 | 1.276823 | 0.439915 | 00:00 |
438 | 1.277447 | 0.440073 | 00:00 |
439 | 1.278078 | 0.439764 | 00:00 |
440 | 1.277541 | 0.438341 | 00:00 |
441 | 1.277259 | 0.437533 | 00:00 |
442 | 1.277890 | 0.436443 | 00:00 |
443 | 1.278056 | 0.434781 | 00:00 |
444 | 1.278557 | 0.433211 | 00:00 |
445 | 1.279172 | 0.432234 | 00:00 |
446 | 1.278723 | 0.431493 | 00:00 |
447 | 1.278936 | 0.431824 | 00:00 |
448 | 1.277782 | 0.431911 | 00:00 |
449 | 1.277620 | 0.431848 | 00:00 |
450 | 1.276831 | 0.431066 | 00:00 |
451 | 1.278341 | 0.430812 | 00:00 |
452 | 1.278536 | 0.430441 | 00:00 |
453 | 1.278312 | 0.430879 | 00:00 |
454 | 1.277748 | 0.431787 | 00:00 |
455 | 1.277966 | 0.433044 | 00:00 |
456 | 1.279019 | 0.434166 | 00:00 |
457 | 1.278404 | 0.435248 | 00:00 |
458 | 1.276615 | 0.435892 | 00:00 |
459 | 1.276845 | 0.436374 | 00:00 |
460 | 1.276245 | 0.437245 | 00:00 |
461 | 1.276376 | 0.437681 | 00:00 |
462 | 1.275729 | 0.437989 | 00:00 |
463 | 1.275048 | 0.437682 | 00:00 |
464 | 1.274092 | 0.437276 | 00:00 |
465 | 1.274472 | 0.436809 | 00:00 |
466 | 1.273300 | 0.435777 | 00:00 |
467 | 1.273547 | 0.434478 | 00:00 |
468 | 1.273648 | 0.433785 | 00:00 |
469 | 1.272841 | 0.433175 | 00:00 |
470 | 1.272466 | 0.432485 | 00:00 |
471 | 1.273044 | 0.431078 | 00:00 |
472 | 1.273408 | 0.429726 | 00:00 |
473 | 1.274605 | 0.428988 | 00:00 |
474 | 1.276156 | 0.429225 | 00:00 |
475 | 1.275433 | 0.428869 | 00:00 |
476 | 1.274731 | 0.428331 | 00:00 |
477 | 1.274568 | 0.427646 | 00:00 |
478 | 1.275164 | 0.427501 | 00:00 |
479 | 1.275586 | 0.426797 | 00:00 |
480 | 1.276055 | 0.426222 | 00:00 |
481 | 1.276230 | 0.425086 | 00:00 |
482 | 1.275929 | 0.424352 | 00:00 |
483 | 1.276360 | 0.423986 | 00:00 |
484 | 1.276525 | 0.424998 | 00:00 |
485 | 1.276920 | 0.426166 | 00:00 |
486 | 1.276009 | 0.427729 | 00:00 |
487 | 1.274913 | 0.428724 | 00:00 |
488 | 1.274580 | 0.429512 | 00:00 |
489 | 1.274184 | 0.431259 | 00:00 |
490 | 1.273628 | 0.433026 | 00:00 |
491 | 1.273393 | 0.434834 | 00:00 |
492 | 1.273662 | 0.435535 | 00:00 |
493 | 1.273636 | 0.435844 | 00:00 |
494 | 1.273769 | 0.435797 | 00:00 |
495 | 1.273900 | 0.436756 | 00:00 |
496 | 1.274714 | 0.436555 | 00:00 |
497 | 1.274074 | 0.436512 | 00:00 |
498 | 1.274465 | 0.434613 | 00:00 |
499 | 1.275774 | 0.433732 | 00:00 |
500 | 1.275432 | 0.432233 | 00:00 |
501 | 1.276003 | 0.430867 | 00:00 |
502 | 1.276261 | 0.429793 | 00:00 |
503 | 1.276384 | 0.427979 | 00:00 |
504 | 1.276624 | 0.426644 | 00:00 |
505 | 1.275999 | 0.426118 | 00:00 |
506 | 1.276096 | 0.426525 | 00:00 |
507 | 1.275079 | 0.427614 | 00:00 |
508 | 1.276388 | 0.429074 | 00:00 |
509 | 1.276053 | 0.430425 | 00:00 |
510 | 1.276089 | 0.431520 | 00:00 |
511 | 1.277126 | 0.431714 | 00:00 |
512 | 1.275999 | 0.430963 | 00:00 |
513 | 1.275098 | 0.429525 | 00:00 |
514 | 1.274984 | 0.428617 | 00:00 |
515 | 1.275022 | 0.427229 | 00:00 |
516 | 1.275094 | 0.425926 | 00:00 |
517 | 1.275182 | 0.425262 | 00:00 |
518 | 1.274411 | 0.425496 | 00:00 |
519 | 1.273775 | 0.426172 | 00:00 |
520 | 1.273251 | 0.427555 | 00:00 |
521 | 1.273064 | 0.428508 | 00:00 |
522 | 1.272296 | 0.428644 | 00:00 |
523 | 1.273507 | 0.428634 | 00:00 |
524 | 1.274507 | 0.428889 | 00:00 |
525 | 1.273968 | 0.428871 | 00:00 |
526 | 1.273722 | 0.428838 | 00:00 |
527 | 1.272688 | 0.428265 | 00:00 |
528 | 1.272377 | 0.427893 | 00:00 |
529 | 1.272426 | 0.427862 | 00:00 |
530 | 1.273073 | 0.427427 | 00:00 |
531 | 1.274464 | 0.426118 | 00:00 |
532 | 1.273954 | 0.425181 | 00:00 |
533 | 1.273494 | 0.424574 | 00:00 |
534 | 1.275140 | 0.424161 | 00:00 |
535 | 1.274743 | 0.423892 | 00:00 |
536 | 1.274905 | 0.423776 | 00:00 |
537 | 1.275069 | 0.424039 | 00:00 |
538 | 1.274786 | 0.424709 | 00:00 |
539 | 1.275063 | 0.425237 | 00:00 |
540 | 1.275005 | 0.426318 | 00:00 |
541 | 1.274613 | 0.427015 | 00:00 |
542 | 1.275139 | 0.427537 | 00:00 |
543 | 1.274351 | 0.428095 | 00:00 |
544 | 1.273227 | 0.428084 | 00:00 |
545 | 1.273541 | 0.427931 | 00:00 |
546 | 1.274337 | 0.428104 | 00:00 |
547 | 1.274290 | 0.428153 | 00:00 |
548 | 1.274891 | 0.427597 | 00:00 |
549 | 1.274971 | 0.427675 | 00:00 |
550 | 1.275439 | 0.427028 | 00:00 |
551 | 1.274790 | 0.426988 | 00:00 |
552 | 1.274083 | 0.427212 | 00:00 |
553 | 1.273748 | 0.427498 | 00:00 |
554 | 1.274750 | 0.427614 | 00:00 |
555 | 1.275946 | 0.426867 | 00:00 |
556 | 1.274293 | 0.426365 | 00:00 |
557 | 1.275466 | 0.426012 | 00:00 |
558 | 1.274676 | 0.425758 | 00:00 |
559 | 1.274342 | 0.425257 | 00:00 |
560 | 1.273930 | 0.424702 | 00:00 |
561 | 1.274716 | 0.424173 | 00:00 |
562 | 1.275054 | 0.423586 | 00:00 |
563 | 1.275562 | 0.422569 | 00:00 |
564 | 1.274419 | 0.421863 | 00:00 |
565 | 1.274622 | 0.420814 | 00:00 |
566 | 1.275100 | 0.420400 | 00:00 |
567 | 1.274937 | 0.419733 | 00:00 |
568 | 1.277137 | 0.419688 | 00:00 |
569 | 1.276941 | 0.419439 | 00:00 |
570 | 1.277252 | 0.419328 | 00:00 |
571 | 1.277493 | 0.419536 | 00:00 |
572 | 1.277797 | 0.419480 | 00:00 |
573 | 1.278061 | 0.419490 | 00:00 |
574 | 1.278169 | 0.419480 | 00:00 |
575 | 1.277927 | 0.419490 | 00:00 |
576 | 1.278974 | 0.420374 | 00:00 |
577 | 1.278948 | 0.421013 | 00:00 |
578 | 1.278935 | 0.421877 | 00:00 |
579 | 1.278023 | 0.423002 | 00:00 |
580 | 1.277989 | 0.424007 | 00:00 |
581 | 1.276583 | 0.425599 | 00:00 |
582 | 1.277259 | 0.427187 | 00:00 |
583 | 1.277854 | 0.429477 | 00:00 |
584 | 1.277001 | 0.431623 | 00:00 |
585 | 1.276584 | 0.432964 | 00:00 |
586 | 1.275946 | 0.434667 | 00:00 |
587 | 1.276057 | 0.434762 | 00:00 |
588 | 1.275009 | 0.433967 | 00:00 |
589 | 1.275314 | 0.433720 | 00:00 |
590 | 1.273904 | 0.433479 | 00:00 |
591 | 1.274179 | 0.433357 | 00:00 |
592 | 1.273775 | 0.434011 | 00:00 |
593 | 1.273625 | 0.433441 | 00:00 |
594 | 1.273317 | 0.432568 | 00:00 |
595 | 1.273117 | 0.431415 | 00:00 |
596 | 1.273501 | 0.430274 | 00:00 |
597 | 1.272782 | 0.429342 | 00:00 |
598 | 1.272771 | 0.428691 | 00:00 |
599 | 1.273144 | 0.428483 | 00:00 |
600 | 1.273933 | 0.427769 | 00:00 |
601 | 1.275232 | 0.426778 | 00:00 |
602 | 1.274657 | 0.426384 | 00:00 |
603 | 1.272773 | 0.426873 | 00:00 |
604 | 1.272794 | 0.427275 | 00:00 |
605 | 1.271168 | 0.428485 | 00:00 |
606 | 1.271341 | 0.429926 | 00:00 |
607 | 1.271791 | 0.431660 | 00:00 |
608 | 1.271047 | 0.433437 | 00:00 |
609 | 1.270697 | 0.436317 | 00:00 |
610 | 1.270496 | 0.440007 | 00:00 |
611 | 1.270102 | 0.443772 | 00:00 |
612 | 1.271098 | 0.448234 | 00:00 |
613 | 1.271582 | 0.451129 | 00:00 |
614 | 1.271624 | 0.452896 | 00:00 |
615 | 1.270778 | 0.454155 | 00:00 |
616 | 1.271866 | 0.454195 | 00:00 |
617 | 1.272291 | 0.453104 | 00:00 |
618 | 1.271521 | 0.450916 | 00:00 |
619 | 1.271600 | 0.448254 | 00:00 |
620 | 1.271335 | 0.446454 | 00:00 |
621 | 1.272218 | 0.444400 | 00:00 |
622 | 1.272856 | 0.442405 | 00:00 |
623 | 1.272063 | 0.440086 | 00:00 |
624 | 1.271590 | 0.437824 | 00:00 |
625 | 1.272498 | 0.434808 | 00:00 |
626 | 1.271762 | 0.432513 | 00:00 |
627 | 1.270996 | 0.429386 | 00:00 |
628 | 1.271373 | 0.426564 | 00:00 |
629 | 1.270855 | 0.423724 | 00:00 |
630 | 1.271137 | 0.421120 | 00:00 |
631 | 1.271783 | 0.418864 | 00:00 |
632 | 1.273023 | 0.417564 | 00:00 |
633 | 1.273757 | 0.416827 | 00:00 |
634 | 1.273862 | 0.416320 | 00:00 |
635 | 1.274126 | 0.416095 | 00:00 |
636 | 1.273799 | 0.415853 | 00:00 |
637 | 1.273040 | 0.415803 | 00:00 |
638 | 1.272662 | 0.415664 | 00:00 |
639 | 1.272027 | 0.416062 | 00:00 |
640 | 1.271672 | 0.416512 | 00:00 |
641 | 1.272172 | 0.417236 | 00:00 |
642 | 1.271868 | 0.418060 | 00:00 |
643 | 1.271568 | 0.418735 | 00:00 |
644 | 1.271143 | 0.419603 | 00:00 |
645 | 1.270978 | 0.420012 | 00:00 |
646 | 1.271980 | 0.420373 | 00:00 |
647 | 1.271218 | 0.420731 | 00:00 |
648 | 1.271259 | 0.420728 | 00:00 |
649 | 1.272616 | 0.421000 | 00:00 |
650 | 1.272669 | 0.421076 | 00:00 |
651 | 1.271993 | 0.421718 | 00:00 |
652 | 1.272139 | 0.422846 | 00:00 |
653 | 1.271593 | 0.424016 | 00:00 |
654 | 1.272084 | 0.424071 | 00:00 |
655 | 1.272031 | 0.423002 | 00:00 |
656 | 1.272287 | 0.422750 | 00:00 |
657 | 1.271674 | 0.422855 | 00:00 |
658 | 1.273351 | 0.423061 | 00:00 |
659 | 1.272599 | 0.423173 | 00:00 |
660 | 1.273701 | 0.422897 | 00:00 |
661 | 1.273888 | 0.422019 | 00:00 |
662 | 1.273520 | 0.421038 | 00:00 |
663 | 1.273092 | 0.420304 | 00:00 |
664 | 1.272444 | 0.419929 | 00:00 |
665 | 1.271363 | 0.419600 | 00:00 |
666 | 1.271219 | 0.419411 | 00:00 |
667 | 1.269995 | 0.418867 | 00:00 |
668 | 1.269656 | 0.418260 | 00:00 |
669 | 1.269196 | 0.417907 | 00:00 |
670 | 1.268761 | 0.417880 | 00:00 |
671 | 1.268957 | 0.418323 | 00:00 |
672 | 1.268709 | 0.418748 | 00:00 |
673 | 1.268655 | 0.419754 | 00:00 |
674 | 1.268234 | 0.420989 | 00:00 |
675 | 1.267637 | 0.422225 | 00:00 |
676 | 1.266987 | 0.423394 | 00:00 |
677 | 1.267742 | 0.424076 | 00:00 |
678 | 1.268641 | 0.424966 | 00:00 |
679 | 1.269050 | 0.425550 | 00:00 |
680 | 1.269404 | 0.426399 | 00:00 |
681 | 1.269093 | 0.427357 | 00:00 |
682 | 1.267688 | 0.427813 | 00:00 |
683 | 1.267508 | 0.428132 | 00:00 |
684 | 1.267760 | 0.428090 | 00:00 |
685 | 1.268440 | 0.427267 | 00:00 |
686 | 1.268510 | 0.426125 | 00:00 |
687 | 1.268797 | 0.424140 | 00:00 |
688 | 1.270080 | 0.422616 | 00:00 |
689 | 1.269908 | 0.421240 | 00:00 |
690 | 1.270103 | 0.419971 | 00:00 |
691 | 1.270363 | 0.418615 | 00:00 |
692 | 1.270040 | 0.417742 | 00:00 |
693 | 1.268655 | 0.417430 | 00:00 |
694 | 1.269910 | 0.417689 | 00:00 |
695 | 1.270580 | 0.418506 | 00:00 |
696 | 1.272406 | 0.419042 | 00:00 |
697 | 1.272349 | 0.419711 | 00:00 |
698 | 1.272880 | 0.420755 | 00:00 |
699 | 1.272883 | 0.421960 | 00:00 |
700 | 1.273314 | 0.422143 | 00:00 |
701 | 1.273034 | 0.422114 | 00:00 |
702 | 1.273084 | 0.421831 | 00:00 |
703 | 1.273080 | 0.421359 | 00:00 |
704 | 1.272575 | 0.420919 | 00:00 |
705 | 1.272600 | 0.421118 | 00:00 |
706 | 1.273959 | 0.420803 | 00:00 |
707 | 1.273513 | 0.420513 | 00:00 |
708 | 1.274025 | 0.420264 | 00:00 |
709 | 1.274153 | 0.420128 | 00:00 |
710 | 1.274102 | 0.419967 | 00:00 |
711 | 1.274380 | 0.419409 | 00:00 |
712 | 1.273970 | 0.419280 | 00:00 |
713 | 1.273786 | 0.419395 | 00:00 |
714 | 1.273131 | 0.420241 | 00:00 |
715 | 1.272942 | 0.421559 | 00:00 |
716 | 1.271915 | 0.422934 | 00:00 |
717 | 1.272501 | 0.424102 | 00:00 |
718 | 1.273117 | 0.424498 | 00:00 |
719 | 1.272259 | 0.424320 | 00:00 |
720 | 1.272185 | 0.424793 | 00:00 |
721 | 1.271772 | 0.424981 | 00:00 |
722 | 1.272063 | 0.424488 | 00:00 |
723 | 1.272277 | 0.423959 | 00:00 |
724 | 1.272755 | 0.423606 | 00:00 |
725 | 1.273820 | 0.423754 | 00:00 |
726 | 1.272688 | 0.423793 | 00:00 |
727 | 1.272453 | 0.423884 | 00:00 |
728 | 1.272389 | 0.423727 | 00:00 |
729 | 1.273391 | 0.422913 | 00:00 |
730 | 1.274100 | 0.421855 | 00:00 |
731 | 1.273513 | 0.421279 | 00:00 |
732 | 1.273111 | 0.420920 | 00:00 |
733 | 1.272613 | 0.420485 | 00:00 |
734 | 1.272443 | 0.420529 | 00:00 |
735 | 1.271953 | 0.420568 | 00:00 |
736 | 1.272574 | 0.420286 | 00:00 |
737 | 1.273751 | 0.420097 | 00:00 |
738 | 1.273916 | 0.420242 | 00:00 |
739 | 1.273586 | 0.420372 | 00:00 |
740 | 1.272596 | 0.420492 | 00:00 |
741 | 1.271311 | 0.420878 | 00:00 |
742 | 1.271327 | 0.421587 | 00:00 |
743 | 1.271216 | 0.422174 | 00:00 |
744 | 1.270743 | 0.422611 | 00:00 |
745 | 1.269523 | 0.423091 | 00:00 |
746 | 1.269110 | 0.424107 | 00:00 |
747 | 1.268073 | 0.425620 | 00:00 |
748 | 1.267374 | 0.427398 | 00:00 |
749 | 1.267113 | 0.429331 | 00:00 |
750 | 1.267896 | 0.430416 | 00:00 |
751 | 1.268471 | 0.431450 | 00:00 |
752 | 1.268011 | 0.432519 | 00:00 |
753 | 1.269007 | 0.433019 | 00:00 |
754 | 1.269112 | 0.433126 | 00:00 |
755 | 1.269771 | 0.432392 | 00:00 |
756 | 1.268727 | 0.431043 | 00:00 |
757 | 1.268470 | 0.429783 | 00:00 |
758 | 1.269278 | 0.428051 | 00:00 |
759 | 1.271361 | 0.426025 | 00:00 |
760 | 1.271295 | 0.423901 | 00:00 |
761 | 1.271354 | 0.422107 | 00:00 |
762 | 1.271454 | 0.420575 | 00:00 |
763 | 1.271540 | 0.419250 | 00:00 |
764 | 1.270984 | 0.418816 | 00:00 |
765 | 1.270823 | 0.418765 | 00:00 |
766 | 1.271914 | 0.419185 | 00:00 |
767 | 1.272920 | 0.419934 | 00:00 |
768 | 1.272469 | 0.420232 | 00:00 |
769 | 1.271818 | 0.420525 | 00:00 |
770 | 1.271626 | 0.420704 | 00:00 |
771 | 1.271659 | 0.421075 | 00:00 |
772 | 1.271453 | 0.420612 | 00:00 |
773 | 1.272748 | 0.419964 | 00:00 |
774 | 1.272353 | 0.419361 | 00:00 |
775 | 1.271293 | 0.418772 | 00:00 |
776 | 1.270828 | 0.418036 | 00:00 |
777 | 1.270876 | 0.417484 | 00:00 |
778 | 1.271057 | 0.416961 | 00:00 |
779 | 1.271099 | 0.416504 | 00:00 |
780 | 1.271199 | 0.416053 | 00:00 |
781 | 1.271219 | 0.415718 | 00:00 |
782 | 1.271712 | 0.415253 | 00:00 |
783 | 1.271361 | 0.415005 | 00:00 |
784 | 1.271433 | 0.414941 | 00:00 |
785 | 1.271927 | 0.414972 | 00:00 |
786 | 1.271041 | 0.415107 | 00:00 |
787 | 1.270600 | 0.415427 | 00:00 |
788 | 1.270219 | 0.416175 | 00:00 |
789 | 1.270014 | 0.417049 | 00:00 |
790 | 1.269783 | 0.417895 | 00:00 |
791 | 1.270131 | 0.418861 | 00:00 |
792 | 1.270787 | 0.419705 | 00:00 |
793 | 1.270611 | 0.420572 | 00:00 |
794 | 1.270306 | 0.421565 | 00:00 |
795 | 1.269954 | 0.422035 | 00:00 |
796 | 1.269831 | 0.422207 | 00:00 |
797 | 1.270145 | 0.422326 | 00:00 |
798 | 1.270792 | 0.422940 | 00:00 |
799 | 1.271778 | 0.423354 | 00:00 |
800 | 1.271575 | 0.424080 | 00:00 |
801 | 1.271554 | 0.423873 | 00:00 |
802 | 1.270897 | 0.423196 | 00:00 |
803 | 1.272045 | 0.422298 | 00:00 |
804 | 1.271711 | 0.421490 | 00:00 |
805 | 1.271199 | 0.421400 | 00:00 |
806 | 1.270147 | 0.421098 | 00:00 |
807 | 1.268678 | 0.421492 | 00:00 |
808 | 1.269291 | 0.422593 | 00:00 |
809 | 1.269256 | 0.423766 | 00:00 |
810 | 1.268801 | 0.424148 | 00:00 |
811 | 1.269273 | 0.424434 | 00:00 |
812 | 1.269585 | 0.425138 | 00:00 |
813 | 1.269865 | 0.425461 | 00:00 |
814 | 1.269681 | 0.425933 | 00:00 |
815 | 1.269045 | 0.426009 | 00:00 |
816 | 1.268257 | 0.425587 | 00:00 |
817 | 1.268794 | 0.425151 | 00:00 |
818 | 1.267605 | 0.424925 | 00:00 |
819 | 1.267826 | 0.424407 | 00:00 |
820 | 1.267772 | 0.423538 | 00:00 |
821 | 1.268041 | 0.422893 | 00:00 |
822 | 1.268778 | 0.422429 | 00:00 |
823 | 1.269550 | 0.421637 | 00:00 |
824 | 1.269203 | 0.421282 | 00:00 |
825 | 1.268799 | 0.421687 | 00:00 |
826 | 1.268237 | 0.421848 | 00:00 |
827 | 1.267691 | 0.422487 | 00:00 |
828 | 1.267250 | 0.422923 | 00:00 |
829 | 1.267680 | 0.423563 | 00:00 |
830 | 1.268066 | 0.424449 | 00:00 |
831 | 1.269371 | 0.425026 | 00:00 |
832 | 1.270578 | 0.425459 | 00:00 |
833 | 1.270154 | 0.425517 | 00:00 |
834 | 1.271275 | 0.425059 | 00:00 |
835 | 1.272392 | 0.425423 | 00:00 |
836 | 1.272214 | 0.425736 | 00:00 |
837 | 1.272517 | 0.426679 | 00:00 |
838 | 1.272938 | 0.427807 | 00:00 |
839 | 1.271929 | 0.429674 | 00:00 |
840 | 1.272611 | 0.431257 | 00:00 |
841 | 1.273283 | 0.432724 | 00:00 |
842 | 1.274438 | 0.434084 | 00:00 |
843 | 1.274650 | 0.434947 | 00:00 |
844 | 1.274472 | 0.435163 | 00:00 |
845 | 1.273045 | 0.435121 | 00:00 |
846 | 1.273504 | 0.433433 | 00:00 |
847 | 1.273688 | 0.431738 | 00:00 |
848 | 1.272119 | 0.430599 | 00:00 |
849 | 1.271450 | 0.429238 | 00:00 |
850 | 1.272066 | 0.427790 | 00:00 |
851 | 1.271806 | 0.426300 | 00:00 |
852 | 1.272571 | 0.424746 | 00:00 |
853 | 1.272507 | 0.423409 | 00:00 |
854 | 1.273250 | 0.422637 | 00:00 |
855 | 1.272741 | 0.421491 | 00:00 |
856 | 1.271687 | 0.420503 | 00:00 |
857 | 1.272371 | 0.419858 | 00:00 |
858 | 1.273018 | 0.419335 | 00:00 |
859 | 1.273156 | 0.419283 | 00:00 |
860 | 1.272646 | 0.419418 | 00:00 |
861 | 1.271833 | 0.419791 | 00:00 |
862 | 1.271710 | 0.420650 | 00:00 |
863 | 1.272065 | 0.421545 | 00:00 |
864 | 1.271676 | 0.421997 | 00:00 |
865 | 1.272315 | 0.422431 | 00:00 |
866 | 1.272371 | 0.422683 | 00:00 |
867 | 1.273441 | 0.423463 | 00:00 |
868 | 1.273368 | 0.423953 | 00:00 |
869 | 1.273838 | 0.424227 | 00:00 |
870 | 1.273423 | 0.424003 | 00:00 |
871 | 1.273252 | 0.424145 | 00:00 |
872 | 1.272922 | 0.423755 | 00:00 |
873 | 1.272439 | 0.423490 | 00:00 |
874 | 1.271831 | 0.423762 | 00:00 |
875 | 1.271342 | 0.423780 | 00:00 |
876 | 1.270275 | 0.423963 | 00:00 |
877 | 1.271327 | 0.424505 | 00:00 |
878 | 1.272343 | 0.424360 | 00:00 |
879 | 1.271777 | 0.424242 | 00:00 |
880 | 1.270334 | 0.423722 | 00:00 |
881 | 1.270589 | 0.423348 | 00:00 |
882 | 1.270954 | 0.422993 | 00:00 |
883 | 1.270391 | 0.422629 | 00:00 |
884 | 1.270513 | 0.422359 | 00:00 |
885 | 1.271272 | 0.422419 | 00:00 |
886 | 1.272306 | 0.421880 | 00:00 |
887 | 1.272898 | 0.420643 | 00:00 |
888 | 1.271767 | 0.419487 | 00:00 |
889 | 1.271009 | 0.419040 | 00:00 |
890 | 1.271372 | 0.418528 | 00:00 |
891 | 1.271396 | 0.417933 | 00:00 |
892 | 1.269892 | 0.417698 | 00:00 |
893 | 1.269399 | 0.417749 | 00:00 |
894 | 1.270068 | 0.418024 | 00:00 |
895 | 1.271702 | 0.418193 | 00:00 |
896 | 1.270700 | 0.418013 | 00:00 |
897 | 1.270333 | 0.418358 | 00:00 |
898 | 1.270212 | 0.418953 | 00:00 |
899 | 1.269929 | 0.419519 | 00:00 |
900 | 1.269445 | 0.420907 | 00:00 |
901 | 1.269470 | 0.422438 | 00:00 |
902 | 1.270324 | 0.424143 | 00:00 |
903 | 1.269367 | 0.425467 | 00:00 |
904 | 1.269738 | 0.427331 | 00:00 |
905 | 1.269594 | 0.428506 | 00:00 |
906 | 1.269876 | 0.428487 | 00:00 |
907 | 1.268683 | 0.428035 | 00:00 |
908 | 1.268298 | 0.427372 | 00:00 |
909 | 1.268516 | 0.426644 | 00:00 |
910 | 1.270161 | 0.425629 | 00:00 |
911 | 1.269550 | 0.424801 | 00:00 |
912 | 1.269741 | 0.423837 | 00:00 |
913 | 1.269373 | 0.422717 | 00:00 |
914 | 1.270666 | 0.421385 | 00:00 |
915 | 1.271440 | 0.419991 | 00:00 |
916 | 1.271428 | 0.418825 | 00:00 |
917 | 1.270471 | 0.418084 | 00:00 |
918 | 1.269040 | 0.417153 | 00:00 |
919 | 1.267550 | 0.416482 | 00:00 |
920 | 1.266732 | 0.416238 | 00:00 |
921 | 1.267777 | 0.416306 | 00:00 |
922 | 1.267468 | 0.416335 | 00:00 |
923 | 1.266902 | 0.416258 | 00:00 |
924 | 1.266400 | 0.416091 | 00:00 |
925 | 1.266268 | 0.416181 | 00:00 |
926 | 1.267537 | 0.416459 | 00:00 |
927 | 1.267546 | 0.416593 | 00:00 |
928 | 1.267580 | 0.417033 | 00:00 |
929 | 1.267100 | 0.417179 | 00:00 |
930 | 1.267429 | 0.417122 | 00:00 |
931 | 1.266354 | 0.416993 | 00:00 |
932 | 1.266780 | 0.416593 | 00:00 |
933 | 1.267334 | 0.416380 | 00:00 |
934 | 1.268203 | 0.416275 | 00:00 |
935 | 1.268690 | 0.416225 | 00:00 |
936 | 1.268106 | 0.416299 | 00:00 |
937 | 1.267751 | 0.416181 | 00:00 |
938 | 1.267971 | 0.416177 | 00:00 |
939 | 1.267857 | 0.416043 | 00:00 |
940 | 1.267757 | 0.416107 | 00:00 |
941 | 1.267885 | 0.415961 | 00:00 |
942 | 1.268943 | 0.415743 | 00:00 |
943 | 1.268653 | 0.415579 | 00:00 |
944 | 1.268244 | 0.415384 | 00:00 |
945 | 1.268926 | 0.415173 | 00:00 |
946 | 1.269704 | 0.415183 | 00:00 |
947 | 1.268462 | 0.415245 | 00:00 |
948 | 1.269335 | 0.415451 | 00:00 |
949 | 1.269407 | 0.415598 | 00:00 |
950 | 1.269982 | 0.415618 | 00:00 |
951 | 1.270360 | 0.415674 | 00:00 |
952 | 1.269101 | 0.415805 | 00:00 |
953 | 1.269473 | 0.416018 | 00:00 |
954 | 1.268484 | 0.416352 | 00:00 |
955 | 1.268797 | 0.416684 | 00:00 |
956 | 1.267822 | 0.416871 | 00:00 |
957 | 1.267788 | 0.416918 | 00:00 |
958 | 1.267305 | 0.416894 | 00:00 |
959 | 1.267411 | 0.416783 | 00:00 |
960 | 1.265259 | 0.416556 | 00:00 |
961 | 1.264081 | 0.415936 | 00:00 |
962 | 1.264263 | 0.415769 | 00:00 |
963 | 1.264485 | 0.415452 | 00:00 |
964 | 1.264702 | 0.414969 | 00:00 |
965 | 1.263372 | 0.414560 | 00:00 |
966 | 1.262719 | 0.414424 | 00:00 |
967 | 1.263197 | 0.414142 | 00:00 |
968 | 1.264656 | 0.414061 | 00:00 |
969 | 1.265447 | 0.414135 | 00:00 |
970 | 1.263721 | 0.414354 | 00:00 |
971 | 1.264755 | 0.414610 | 00:00 |
972 | 1.265135 | 0.414962 | 00:00 |
973 | 1.265999 | 0.415164 | 00:00 |
974 | 1.265511 | 0.415425 | 00:00 |
975 | 1.264708 | 0.415568 | 00:00 |
976 | 1.263597 | 0.415669 | 00:00 |
977 | 1.263624 | 0.415896 | 00:00 |
978 | 1.264635 | 0.415878 | 00:00 |
979 | 1.264610 | 0.415971 | 00:00 |
980 | 1.264012 | 0.416127 | 00:00 |
981 | 1.265062 | 0.416171 | 00:00 |
982 | 1.264798 | 0.416271 | 00:00 |
983 | 1.264278 | 0.416447 | 00:00 |
984 | 1.264879 | 0.416630 | 00:00 |
985 | 1.265420 | 0.417135 | 00:00 |
986 | 1.265610 | 0.417360 | 00:00 |
987 | 1.265444 | 0.417375 | 00:00 |
988 | 1.266299 | 0.417734 | 00:00 |
989 | 1.264446 | 0.417796 | 00:00 |
990 | 1.264124 | 0.418030 | 00:00 |
991 | 1.263804 | 0.417795 | 00:00 |
992 | 1.264004 | 0.417678 | 00:00 |
993 | 1.264086 | 0.417720 | 00:00 |
994 | 1.264177 | 0.417654 | 00:00 |
995 | 1.265382 | 0.417681 | 00:00 |
996 | 1.265916 | 0.417580 | 00:00 |
997 | 1.266178 | 0.417524 | 00:00 |
998 | 1.265989 | 0.417092 | 00:00 |
999 | 1.266020 | 0.416904 | 00:00 |
-
loss들도 에폭별로 기록되어 있음
lrnr.recorder.plot_loss()
-
net_fastai에도 파라메터가 업데이트 되어있음
- 리스트를 확인해보면 net_fastai 의 파라메터가 알아서 GPU로 옮겨져서 학습됨.
-
플랏
net_fastai.to("cpu")
plt.plot(X,y,'.')
plt.plot(X_tr,net_fastai(X_tr).data)
plt.plot(X_val,net_fastai(X_val).data)
[<matplotlib.lines.Line2D at 0x7fb55d157d00>]
import time # 시간 보는 함수
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
0.5415534973144531
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
net.to("cuda:0")
X=X.to("cuda:0")
y=y.to("cuda:0")
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
2.0947225093841553
-
?? CPU가 더 빠르다!!
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=20480),
torch.nn.ReLU(),
torch.nn.Linear(in_features=20480,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
3.8015544414520264
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=20480),
torch.nn.ReLU(),
torch.nn.Linear(in_features=20480,out_features=1))
net.to("cuda:0")
X=X.to("cuda:0")
y=y.to("cuda:0")
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
2.3244359493255615
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=204800),
torch.nn.ReLU(),
torch.nn.Linear(in_features=204800,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
62.91938018798828
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=204800),
torch.nn.ReLU(),
torch.nn.Linear(in_features=204800,out_features=1))
net.to("cuda:0")
X=X.to("cuda:0")
y=y.to("cuda:0")
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
2.087972640991211
-
현재 작업하고 있는 컴퓨터에서 아래코드를 실행후 시간을 출력하여 스샷제출
torch.manual_seed(5)
X=torch.linspace(0,1,100).reshape(100,1)
y=torch.randn(100).reshape(100,1)*0.01
torch.manual_seed(1) # 초기가중치를 똑같이
net=torch.nn.Sequential(
torch.nn.Linear(in_features=1,out_features=512),
torch.nn.ReLU(),
torch.nn.Linear(in_features=512,out_features=1))
optimizer= torch.optim.Adam(net.parameters())
loss_fn= torch.nn.MSELoss()
t1=time.time()
for epoc in range(1000):
## 1
yhat=net(X)
## 2
loss=loss_fn(yhat,y)
## 3
loss.backward()
## 4
optimizer.step()
net.zero_grad()
t2=time.time()
t2-t1
0.5490124225616455