import tqdm
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import plotly.express as px
import warnings
warnings.simplefilter("ignore", np.ComplexWarning)
from haversine import haversine
from IPython.display import HTML
from matplotlib import cm
from pygsp import graphs, filters, plotting, utils

import rpy2
import rpy2.robjects as ro 
from rpy2.robjects.vectors import FloatVector 
from rpy2.robjects.packages import importr
import warnings
warnings.filterwarnings("ignore")
%load_ext rpy2.ipython
%%R
set.seed(1)
epsilon = rnorm(1000)
signal = sample(c(runif(25,-7,-5), runif(25,5,7), rep(0,950)))
index_of_trueoutlier = which(signal!=0)
index_of_trueoutlier_bool = signal!=0

x=signal+epsilon
plot(1:1000,x)
points(index_of_trueoutlier,x[index_of_trueoutlier],col=2,cex=4)
%R -o x
%R -o index_of_trueoutlier
%R -o index_of_trueoutlier_bool
%R -o signal
index_of_trueoutlier_bool=np.array(index_of_trueoutlier_bool,dtype=np.bool8)
ebayesthresh = importr('EbayesThresh').ebayesthresh
xhat = np.array(ebayesthresh(FloatVector(x)))

Linear(1)

_x = np.linspace(0,2,1000)
_y1 = 5*_x
_y = _y1 + x # x is epsilon
df1=pd.DataFrame({'x':_x, 'y':_y, 'y1':_y1})
w=np.zeros((1000,1000))
for i in range(1000):
    for j in range(1000):
        if i==j :
            w[i,j] = 0
        elif np.abs(i-j) <= 1 : 
            w[i,j] = 1
class SIMUL:
    def __init__(self,df):
        self.df = df
        self.y = df.y.to_numpy()
        self.y1 = df.y1.to_numpy()
        self.x = df.x.to_numpy()
        self.n = len(self.y)
        self.W = w
    def _eigen(self):
        d= self.W.sum(axis=1)
        D= np.diag(d)
        self.L = np.diag(1/np.sqrt(d)) @ (D-self.W) @ np.diag(1/np.sqrt(d))
        self.lamb, self.Psi = np.linalg.eigh(self.L)
        self.Lamb = np.diag(self.lamb)      
    def fit(self,sd=5,ref=30,ymin=-5,ymax=20,cuts=0,cutf=995): # fit with ebayesthresh
        self._eigen()
        self.ybar = self.Psi.T @ self.y # fbar := graph fourier transform of f
        self.power = self.ybar**2 
        ebayesthresh = importr('EbayesThresh').ebayesthresh
        self.power_threshed=np.array(ebayesthresh(FloatVector(self.ybar**2),sd=sd))
        self.ybar_threshed = np.where(self.power_threshed>0,self.ybar,0)
        self.yhat = self.Psi@self.ybar_threshed
        self.df = self.df.assign(yHat = self.yhat)
        self.df = self.df.assign(Residual = self.df.y- self.df.yHat)
        self.differ=(np.abs(self.y-self.yhat)-np.min(np.abs(self.y-self.yhat)))/(np.max(np.abs(self.y-self.yhat))-np.min(np.abs(self.y-self.yhat))) #color 표현은 위핸 표준화
        self.df = self.df.assign(differ = self.differ)
        
        fig,ax = plt.subplots(figsize=(10,10))
        ax.scatter(self.x,self.y,color='gray',s=50,alpha=0.7)
        ax.scatter(self.x[index_of_trueoutlier_bool],self.y[index_of_trueoutlier_bool],color='red',s=50)
        ax.plot(self.x[cuts:cutf],self.yhat[cuts:cutf], '--k',lw=3)
        ax.scatter(self.df.query('Residual**2>@ref')['x'],self.df.query('Residual**2>@ref')['y'],color='red',s=550,facecolors='none', edgecolors='r')
        fig.tight_layout()
        fig.savefig('fig1.eps',format='eps')
_simul = SIMUL(df1)
_simul.fit(sd=20,ref=20,ymin=-10,ymax=15)
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.

Linear(2)

_x = np.linspace(0,2,1000)
_y1 = 5*_x**2
_y = _y1 + x # x is epsilon
df2=pd.DataFrame({'x':_x, 'y':_y, 'y1':_y1})
_simul2 = SIMUL(df2)
_simul2.fit(sd=20,ref=20,ymin=-10,ymax=15)
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.

COS

_x = np.linspace(0,2,1000)
_y1 = -2+ 3*np.cos(_x) + 1*np.cos(2*_x) + 5*np.cos(5*_x)
_y = _y1 + x
df4=pd.DataFrame({'x':_x, 'y':_y, 'y1':_y1})
_simul4 = SIMUL(df4)
_simul4.fit(sd=20,ref=20,ymin=-10,ymax=15)
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.

SIN

_x = np.linspace(0,2,1000)
_y1 =  3*np.sin(_x) + 1*np.sin(_x**2) + 5*np.sin(5*_x) 
_y = _y1 + x # x is epsilon
df5=pd.DataFrame({'x':_x, 'y':_y, 'y1':_y1})
_simul5 = SIMUL(df5)
_simul5.fit(ref=15,ymin=-10,ymax=15,cuts=5)
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.

1D manifold

np.random.seed(777)
pi=np.pi
n=1000
ang=np.linspace(-pi,pi-2*pi/n,n)
r=5+np.cos(np.linspace(0,12*pi,n))
vx=r*np.cos(ang)
vy=r*np.sin(ang)
f1=10*np.sin(np.linspace(0,6*pi,n))
f = f1 + x
df = pd.DataFrame({'x' : vx, 'y' : vy, 'f' : f, 'f1' : f1})
class SIMUL:
    def __init__(self,df):
        self.df = df 
        self.f = df.f.to_numpy()
        self.f1 = df.f1.to_numpy()
        self.x = df.x.to_numpy()
        self.y = df.y.to_numpy()
        self.n = len(self.f)
        self.theta= None
    def get_distance(self):
        self.D = np.zeros([self.n,self.n])
        locations = np.stack([self.x, self.y],axis=1)
        for i in tqdm.tqdm(range(self.n)):
            for j in range(i,self.n):
                self.D[i,j]=np.linalg.norm(locations[i]-locations[j])
        self.D = self.D + self.D.T
    def get_weightmatrix(self,theta=1,beta=0.5,kappa=4000):
        self.theta = theta
        dist = np.where(self.D < kappa,self.D,0)
        self.W = np.exp(-(dist/self.theta)**2)
    def _eigen(self):
        d= self.W.sum(axis=1)
        D= np.diag(d)
        self.L = np.diag(1/np.sqrt(d)) @ (D-self.W) @ np.diag(1/np.sqrt(d))
        self.lamb, self.Psi = np.linalg.eigh(self.L)
        self.Lamb = np.diag(self.lamb)       
    def fit(self,sd=5,ref=60): # fit with ebayesthresh
        self._eigen()
        self.fbar = self.Psi.T @ self.f # fbar := graph fourier transform of f
        self.power = self.fbar**2 
        ebayesthresh = importr('EbayesThresh').ebayesthresh
        self.power_threshed=np.array(ebayesthresh(FloatVector(self.fbar**2),sd=sd))
        self.fbar_threshed = np.where(self.power_threshed>0,self.fbar,0)
        self.fhat = self.Psi@self.fbar_threshed
        self.df = self.df.assign(fHat = self.fhat)
        self.df = self.df.assign(Residual = self.df.f- self.df.fHat)
        self.dif=(np.abs(self.f-self.fhat)-np.min(np.abs(self.f-self.fhat)))/(np.max(np.abs(self.f-self.fhat))-np.min(np.abs(self.f-self.fhat)))
        self.df = self.df.assign(dif = self.dif)
        self.bottom = np.zeros_like(self.f)
        self.width=0.05
        self.depth=0.05
        fig = plt.figure(figsize=(7,7))
        ax = fig.add_subplot(1,1,1, projection='3d')
        ax.grid(False)
        ax.scatter3D(self.x,self.y,self.f,zdir='z',s=50,marker='.',color='gray')
        ax.scatter3D(self.x[index_of_trueoutlier_bool],self.y[index_of_trueoutlier_bool],self.f[index_of_trueoutlier_bool],zdir='z',s=50,marker='.',color='red')
        
        ax.scatter3D(self.df.query('Residual**2>@ref')['x'],self.df.query('Residual**2>@ref')['y'],self.df.query('Residual**2>@ref')['f'],edgecolors='red',zdir='z',s=550,facecolors='none')
        ax.plot3D(self.x,self.y,self.f1,'--k',lw=3)
        # ax.plot3D(self.x,self.y,[0]*1000,'black')
        # ax.set_xlim(-3,3)
        # ax.set_ylim(-3,3)
        # ax.set_zlim(-15,15)
        #ax.view_init(elev=25., azim=-45)
        fig.savefig('fig2.eps',format='eps')
_simul3d = SIMUL(df)
_simul3d.get_distance()
100%|██████████| 1000/1000 [00:01<00:00, 587.71it/s]
_simul3d.get_weightmatrix(theta=(_simul3d.D[_simul3d.D>0].mean()),kappa=2500) 
%%capture --no-display
_simul3d.fit(sd=5,ref=20)

Bunny

G = graphs.Bunny()
n = G.N
g = filters.Heat(G, tau=75) # 꼬리부분의 빨간신호를 퍼지게하는 정도
normal = np.random.randn(n)
unif = np.concatenate([np.random.uniform(low=3,high=7,size=60), np.random.uniform(low=-7,high=-3,size=60),np.zeros(n-120)]); np.random.shuffle(unif)
noise = normal + unif
index_of_trueoutlier_bool = (unif!=0)
f = np.zeros(n)
f[1000] = -3234
f = g.filter(f, method='chebyshev') 
2022-11-10 16:00:24,205:[WARNING](pygsp.graphs.graph.lmax): The largest eigenvalue G.lmax is not available, we need to estimate it. Explicitly call G.estimate_lmax() or G.compute_fourier_basis() once beforehand to suppress the warning.
W = G.W.toarray()
x = G.coords[:,0]
y = G.coords[:,1]
z = -G.coords[:,2]
df = pd.DataFrame({'x' : x, 'y' : y, 'z' : z, 'f' : f, 'noise' : noise})
class SIMUL:
    def __init__(self,df):
        self.df = df 
        self.f = df.f.to_numpy()
        self.z = df.z.to_numpy()
        self.x = df.x.to_numpy()
        self.y = df.y.to_numpy()
        self.noise = df.noise.to_numpy()
        self.fnoise = self.f + self.noise
        self.W = W
        self.n = len(self.f)
        self.theta= None
    def _eigen(self):
        d= self.W.sum(axis=1)
        D= np.diag(d)
        self.L = np.diag(1/np.sqrt(d)) @ (D-self.W) @ np.diag(1/np.sqrt(d))
        self.lamb, self.Psi = np.linalg.eigh(self.L)
        self.Lamb = np.diag(self.lamb)       
    def fit(self,sd=2.5,ref=6): # fit with ebayesthresh
        self._eigen()
        self.fbar = self.Psi.T @ self.fnoise # fbar := graph fourier transform of f
        self.power = self.fbar**2 
        ebayesthresh = importr('EbayesThresh').ebayesthresh
        self.power_threshed=np.array(ebayesthresh(FloatVector(self.fbar**2),sd=sd))
        self.fbar_threshed = np.where(self.power_threshed>0,self.fbar,0)
        self.fhat = self.Psi@self.fbar_threshed
        self.df = self.df.assign(fnoise = self.fnoise)
        self.df = self.df.assign(fHat = self.fhat)
        self.df = self.df.assign(Residual = self.df.f + self.df.noise - self.df.fHat)
        self.bottom = np.zeros_like(self.f)
        self.width=0.05
        self.depth=0.05
        
        fig = plt.figure(figsize=(30,12),dpi=400)
        ax1 = fig.add_subplot(251, projection='3d')
        ax1.grid(False)
        ax1.scatter3D(self.x,self.y,self.z,c='gray',zdir='z',alpha=0.5,marker='.')
        ax1.view_init(elev=60., azim=-90)

        ax2= fig.add_subplot(252, projection='3d')
        ax2.grid(False)
        ax2.scatter3D(self.x,self.y,self.z,c=self.f,cmap='hsv',zdir='z',marker='.',alpha=0.5,vmin=-12,vmax=10)
        ax2.view_init(elev=60., azim=-90)

        ax3= fig.add_subplot(253, projection='3d')
        ax3.grid(False)
        ax3.scatter3D(self.x,self.y,self.z,c=self.fnoise,cmap='hsv',zdir='z',marker='.',alpha=0.5,vmin=-12,vmax=10)
        ax3.view_init(elev=60., azim=-90)
        
        ax4= fig.add_subplot(254, projection='3d')
        ax4.grid(False)
        ax4.scatter3D(self.x,self.y,self.z,c=self.fnoise,cmap='hsv',zdir='z',marker='.',vmin=-12,vmax=10,s=1)
        ax4.scatter3D(self.x[index_of_trueoutlier_bool],self.y[index_of_trueoutlier_bool],self.z[index_of_trueoutlier_bool],c=self.fnoise[index_of_trueoutlier_bool],cmap='hsv',zdir='z',marker='.',s=50)
        ax4.view_init(elev=60., azim=-90)

        ax5= fig.add_subplot(255, projection='3d')
        ax5.grid(False)
        ax5.scatter3D(self.x,self.y,self.z,c=self.fnoise,cmap='hsv',zdir='z',marker='.',vmin=-12,vmax=10,s=1)
        ax5.scatter3D(self.x[index_of_trueoutlier_bool],self.y[index_of_trueoutlier_bool],self.z[index_of_trueoutlier_bool],c=self.fnoise[index_of_trueoutlier_bool],cmap='hsv',zdir='z',marker='.',s=50)
        ax5.scatter3D(self.df.query('Residual**2>@ref')['x'],self.df.query('Residual**2>@ref')['y'],self.df.query('Residual**2>@ref')['z'],zdir='z',s=550,marker='.',edgecolors='red',facecolors='none')
        ax5.view_init(elev=60., azim=-90)
        
        ax6 = fig.add_subplot(256, projection='3d')
        ax6.grid(False)
        ax6.scatter3D(self.x,self.y,self.z,c='gray',zdir='z',alpha=0.5,marker='.')
        ax6.view_init(elev=-60., azim=-90)

        ax7= fig.add_subplot(257, projection='3d')
        ax7.grid(False)
        ax7.scatter3D(self.x,self.y,self.z,c=self.f,cmap='hsv',zdir='z',marker='.',alpha=0.5,vmin=-12,vmax=10)
        ax7.view_init(elev=-60., azim=-90)

        ax8= fig.add_subplot(258, projection='3d')
        ax8.grid(False)
        ax8.scatter3D(self.x,self.y,self.z,c=self.fnoise,cmap='hsv',zdir='z',marker='.',alpha=0.5,vmin=-12,vmax=10)
        ax8.view_init(elev=-60., azim=-90)
        
        ax9= fig.add_subplot(259, projection='3d')
        ax9.grid(False)
        ax9.scatter3D(self.x,self.y,self.z,c=self.fnoise,cmap='hsv',zdir='z',marker='.',vmin=-12,vmax=10,s=1)
        ax9.scatter3D(self.x[index_of_trueoutlier_bool],self.y[index_of_trueoutlier_bool],self.z[index_of_trueoutlier_bool],c=self.fnoise[index_of_trueoutlier_bool],cmap='hsv',zdir='z',marker='.',s=50)
        ax9.view_init(elev=-60., azim=-90)

        ax10= fig.add_subplot(2,5,10, projection='3d')
        ax10.grid(False)
        ax10.scatter3D(self.x,self.y,self.z,c=self.fnoise,cmap='hsv',zdir='z',marker='.',vmin=-12,vmax=10,s=1)
        ax10.scatter3D(self.x[index_of_trueoutlier_bool],self.y[index_of_trueoutlier_bool],self.z[index_of_trueoutlier_bool],c=self.fnoise[index_of_trueoutlier_bool],cmap='hsv',zdir='z',marker='.',s=50)
        ax10.scatter3D(self.df.query('Residual**2>@ref')['x'],self.df.query('Residual**2>@ref')['y'],self.df.query('Residual**2>@ref')['z'],zdir='z',s=550,marker='.',edgecolors='red',facecolors='none')
        ax10.view_init(elev=-60., azim=-90)        
        fig.savefig('fig_bunny.eps',format='eps')
_simul = SIMUL(df)
max(_simul.f),max(_simul.fnoise)
(-0.010827062886269594, 8.453058252262611)
min(_simul.f),min(_simul.fnoise)
(-4.746207776245853, -11.196630128149796)
%%capture --no-display
_simul.fit(sd=2,ref=5)

Earthquake

df= pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/earthquakes-23k.csv')
df_global= pd.concat([pd.read_csv('00_05.csv'),pd.read_csv('05_10.csv'),pd.read_csv('10_15.csv'),pd.read_csv('15_20.csv')]).iloc[:,[0,1,2,4]].rename(columns={'latitude':'Latitude','longitude':'Longitude','mag':'Magnitude'}).reset_index().iloc[:,1:]
df_global = df_global.assign(Year=list(map(lambda x: x.split('-')[0], df_global.time))).iloc[:,1:]
df_global.Year = df_global.Year.astype(np.float64)
class MooYaHo:
    def __init__(self,df):
        self.df = df 
        self.f = df.Magnitude.to_numpy()
        self.year = df.Year.to_numpy()
        self.lat = df.Latitude.to_numpy()
        self.long = df.Longitude.to_numpy()
        self.n = len(self.f)
        
        self.theta= None
    def get_distance(self):
        self.D = np.zeros([self.n,self.n])
        locations = np.stack([self.lat, self.long],axis=1)
        for i in tqdm.tqdm(range(self.n)):
            for j in range(i,self.n): 
                self.D[i,j]=haversine(locations[i],locations[j])
        self.D = self.D+self.D.T
    def get_weightmatrix(self,theta=1,beta=0.5,kappa=4000):
        self.theta = theta
        dist = np.where(self.D<kappa,self.D,0)
        self.W = np.exp(-(dist/self.theta)**2)

    def _eigen(self):
        d= self.W.sum(axis=1)
        D= np.diag(d)
        self.L = np.diag(1/np.sqrt(d)) @ (D-self.W) @ np.diag(1/np.sqrt(d))
        self.lamb, self.Psi = np.linalg.eigh(self.L)
        self.Lamb = np.diag(self.lamb)        
    def fit(self,m):
        self._eigen()
        self.fhat = self.Psi[:,0:m]@self.Psi[:,0:m].T@self.f
        self.df = self.df.assign(MagnitudeHat = self.fhat)
        self.df = self.df.assign(Residual = self.df.Magnitude- self.df.MagnitudeHat)
        plt.plot(self.f,'.')
        plt.plot(self.fhat,'x')
class MooYaHo2(MooYaHo): # ebayesthresh 기능추가
    def fit2(self,ref=0.5): # fit with ebayesthresh
        self._eigen()
        self.fbar = self.Psi.T @ self.f # fbar := graph fourier transform of f
        self.power = self.fbar**2 
        ebayesthresh = importr('EbayesThresh').ebayesthresh
        self.power_threshed=np.array(ebayesthresh(FloatVector(self.fbar**2)))
        self.fbar_threshed = np.where(self.power_threshed>0,self.fbar,0)
        self.fhat = self.Psi@self.fbar_threshed
        self.df = self.df.assign(MagnitudeHat = self.fhat)
        self.df = self.df.assign(Residual = self.df.Magnitude- self.df.MagnitudeHat)
        self.con = np.where(self.df.Residual>0.7,1,0)
import plotly.io as pio
import plotly.express as px
from PIL import Image
import os
class eachlocation(MooYaHo2):
    def haiti(self,MagThresh=7,ResThresh=1,adjzoom=5,adjmarkersize = 20):
        fig = px.density_mapbox(self.df, 
                        lat='Latitude', 
                        lon='Longitude', 
                        z='Magnitude', 
                        radius=5,
                        center=dict(lat=18.4430, lon=-72.5710), 
                        zoom= adjzoom,
                        height=900,
                        opacity = 0.6,
                        mapbox_style="stamen-terrain",
                        range_color=[-7,7])
        fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
        fig.add_scattermapbox(lat = self.df.query('Magnitude > @MagThresh')['Latitude'],
                      lon = self.df.query('Magnitude > @MagThresh')['Longitude'],
                      text = self.df.query('Magnitude > @MagThresh')['Magnitude'],
                      marker_size= 5,
                      marker_color= 'red',
                      opacity = 0.1
                      )
        fig.add_scattermapbox(lat = self.df.query('Residual**2 > @ResThresh')['Latitude'],
                      lon = self.df.query('Residual**2 > @ResThresh')['Longitude'],
                      text = self.df.query('Magnitude > @ResThresh')['Magnitude'],
                      marker_size= adjmarkersize,
                      marker_color= 'blue',
                      opacity = 1
                      )
        return fig 
        
    def lquique(self,MagThresh=7,ResThresh=1,adjzoom=5, adjmarkersize= 20):
        fig = px.density_mapbox(self.df, 
                        lat='Latitude', 
                        lon='Longitude', 
                        z='Magnitude', 
                        radius=5,
                        center=dict(lat=-32.6953, lon=-71.4416), 
                        zoom=adjzoom,
                        height=900,
                        opacity = 0.6,
                        mapbox_style="stamen-terrain",
                        range_color=[-7,7])
        fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
        fig.add_scattermapbox(lat = self.df.query('Magnitude > @MagThresh')['Latitude'],
                      lon = self.df.query('Magnitude > @MagThresh')['Longitude'],
                      text = self.df.query('Magnitude > @MagThresh')['Magnitude'],
                      marker_size= 5,
                      marker_color= 'red',
                      opacity = 0.1
                      )
        fig.add_scattermapbox(lat = self.df.query('Residual**2 > @ResThresh')['Latitude'],
                      lon = self.df.query('Residual**2 > @ResThresh')['Longitude'],
                      text = self.df.query('Magnitude > @ResThresh')['Magnitude'],
                      marker_size= adjmarkersize,
                      marker_color= 'blue',
                      opacity = 1
                      )
        return fig      
    def sichuan(self,MagThresh=7,ResThresh=1,adjzoom=5,adjmarkersize=20):
        fig = px.density_mapbox(self.df, 
                        lat='Latitude', 
                        lon='Longitude', 
                        z='Magnitude', 
                        radius=3,
                        center=dict(lat=30.3080, lon=102.8880), 
                        zoom=adjzoom,
                        height=900,
                        opacity = 0.6,
                        mapbox_style="stamen-terrain",
                        range_color=[-7,7])
        fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
        fig.add_scattermapbox(lat = self.df.query('Magnitude > @MagThresh')['Latitude'],
                      lon = self.df.query('Magnitude > @MagThresh')['Longitude'],
                      text = self.df.query('Magnitude > @MagThresh')['Magnitude'],
                      marker_size= 5,
                      marker_color= 'red',
                      opacity = 0.1
                      )
        fig.add_scattermapbox(lat = self.df.query('Residual**2 > @ResThresh')['Latitude'],
                      lon = self.df.query('Residual**2 > @ResThresh')['Longitude'],
                      text = self.df.query('Magnitude > @ResThresh')['Magnitude'],
                      marker_size= adjmarkersize,
                      marker_color= 'blue',
                      opacity = 1
                      )
        return fig 
each_location=eachlocation(df_global.query("2010 <= Year < 2015"))

- get distance

#each_location.get_distance()
#np.save('D.npy',each_location.D)
each_location.D = np.load('D.npy')
each_location.D[each_location.D>0].mean()
8810.865423093777
plt.hist(each_location.D[each_location.D>0])
(array([14176290., 16005894., 21186674., 22331128., 19394182., 17548252.,
        16668048., 13316436., 12973260.,  2582550.]),
 array([8.97930163e-02, 2.00141141e+03, 4.00273303e+03, 6.00405465e+03,
        8.00537626e+03, 1.00066979e+04, 1.20080195e+04, 1.40093411e+04,
        1.60106627e+04, 1.80119844e+04, 2.00133060e+04]),
 <BarContainer object of 10 artists>)

- weight matrix

#each_location.get_weightmatrix(theta=(8810.865423093777),kappa=2500) 
#np.save('W.npy',each_location.W)
each_location.W = np.load('W.npy')

- fit

each_location.fit2()

adjzoom: zoom 조정가능, adjmarkersize=센터 위치 포인트의 점 크기

fig_haiti = each_location.haiti(MagThresh=6.9,ResThresh=0.5,adjzoom=5,adjmarkersize=20)
fig_lquique = each_location.lquique(MagThresh=6.4,ResThresh=0.4,adjzoom=5,adjmarkersize=20)
fig_sichuan = each_location.sichuan(MagThresh=6.5,ResThresh=0.4,adjzoom=5,adjmarkersize=20)
fig_haiti.write_image("fig_haiti.pdf")