import itstgcnEvolveGCNH
import torch
import itstgcnEvolveGCNH.planner
import pandas as pd
import numpy as np
import randomITSTGCN add Model
ITSTGCN
summerizing it
RANDOM
예
data_dict = itstgcnGCLSTM.load_data('./data/fivenodes.pkl')
loader = itstgcnGConvLSTM.DatasetLoader(data_dict)from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader
loader1 = ChickenpoxDatasetLoader()from torch_geometric_temporal.dataset import PedalMeDatasetLoader
loader2 = PedalMeDatasetLoader()from torch_geometric_temporal.dataset import WikiMathsDatasetLoader
loader3 = WikiMathsDatasetLoader()# from torch_geometric_temporal.dataset import WindmillOutputLargeDatasetLoader
# loader4 = WindmillOutputLargeDatasetLoader()# from torch_geometric_temporal.dataset import WindmillOutputMediumDatasetLoader
# loader5 = WindmillOutputMediumDatasetLoader()# from torch_geometric_temporal.dataset import WindmillOutputSmallDatasetLoader
# loader6 = WindmillOutputSmallDatasetLoader()loader6 = itstgcnEvolveGCNH.load_data('./data/Windmillsmall.pkl')# dataset6 = _a.get_dataset(lags=8)from torch_geometric_temporal.dataset import MontevideoBusDatasetLoader
loader10 = MontevideoBusDatasetLoader()Simulation
plans_stgcn_rand = {
'max_iteration': 1,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.7],
'lags': [8],
'nof_filters': [12],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnEvolveGCNH.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader6,dataset_name='windmillsmall')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.7],
'lags': [2],
'nof_filters': [12],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader,dataset_name='fivenodes')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.8],
'lags': [2],
'nof_filters': [12],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader,dataset_name='fivenodes')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0],
'lags': [2],
'nof_filters': [12],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader,dataset_name='fivenodes')
plnr.simulate()mindex= [[],[],[],list(range(50,150)),[]]
# mindex= [list(range(50,150)),[],list(range(50,90)),list(range(50,150)),[]] # node 2
plans_stgcn_block = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mindex': [mindex],
'lags': [2],
'nof_filters': [12],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader,dataset_name='fivenodes')
plnr.simulate(mindex=mindex,mtype='block')plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.3,0.8],
'lags': [4],
'nof_filters': [32],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader1,dataset_name='chickenpox')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0],
'lags': [4],
'nof_filters': [32],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader1,dataset_name='chickenpox')
plnr.simulate()my_list = [[] for _ in range(20)] #chickenpox
another_list = list(range(100,400))
my_list[1] = another_list
my_list[3] = another_list
my_list[5] = another_list
my_list[7] = another_list
my_list[9] = another_list
my_list[11] = another_list
my_list[13] = another_list
my_list[15] = another_list
mindex = my_list# mindex= [[],[],[],list(range(50,150)),[]]
# mindex= [list(range(50,150)),[],list(range(50,90)),list(range(50,150)),[]] # node 2
plans_stgcn_block = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mindex': [mindex],
'lags': [4],
'nof_filters': [32],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader1,dataset_name='chickenpox')
plnr.simulate(mindex=mindex,mtype='block')plans_stgcn_rand = {
'max_iteration': 30,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0,0.3,0.6],
'lags': [4],
'nof_filters': [2],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader2,dataset_name='pedalme')
plnr.simulate()my_list = [[] for _ in range(15)] #pedalme
another_list = list(range(5,25))
my_list[1] = another_list
my_list[3] = another_list
my_list[5] = another_list
my_list[7] = another_list
my_list[9] = another_list
my_list[11] = another_list
mindex = my_list# mindex= [[],[],[],list(range(50,150)),[]] # node 1
# mindex= [list(range(10,100)),[],list(range(50,80)),[],[]] # node 2
# mindex= [list(range(10,100)),[],list(range(50,80)),list(range(50,150)),[]] # node3
plans_stgcn_block = {
'max_iteration': 30,
'method': ['STGCN', 'IT-STGCN'],
'mindex': [mindex],
'lags': [4],
'nof_filters': [2],
'inter_method': ['linear','nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader2,dataset_name='pedalme')
plnr.simulate(mindex=mindex,mtype='block')plans_stgcn_rand = {
'max_iteration': 10,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.3],
'lags': [8],
'nof_filters': [12],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnEvolveGCNH.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader3,dataset_name='wikimath')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.8],
'lags': [8],
'nof_filters': [12],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnEvolveGCNH.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader3,dataset_name='wikimath')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 10,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0],
'lags': [8],
'nof_filters': [12],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnEvolveGCNH.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader3,dataset_name='wikimath')
plnr.simulate()import random
my_list = [[] for _ in range(1068)] # wikimath
another_list = random.sample(range(570), 72)
# my_list에서 250개 요소 무작위 선택
selected_indexes = random.sample(range(len(my_list)), 250)
# 선택된 요소에 해당하는 값들을 another_list에 할당
for index in selected_indexes:
my_list[index] = another_listimport random
my_list = [[] for _ in range(1068)] # wikimath
another_list = random.sample(range(570), 150)
# my_list에서 250개 요소 무작위 선택
selected_indexes = random.sample(range(len(my_list)), 500)
# 선택된 요소에 해당하는 값들을 another_list에 할당
for index in selected_indexes:
my_list[index] = another_list
mindex = my_list# mindex= [[],[],[],list(range(50,150)),[]] # node 1
# mindex= [list(range(10,100)),[],list(range(50,80)),[],[]] # node 2
# mindex= [list(range(10,100)),[],list(range(50,80)),list(range(50,150)),[]] # node3
plans_stgcn_block = {
'max_iteration': 10,
'method': ['STGCN', 'IT-STGCN'],
'mindex': [mindex],
'lags': [8],
'nof_filters': [12],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnEvolveGCNH.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader3,dataset_name='wikimath')
plnr.simulate(mindex=mindex,mtype='block')같은 노드 같은 missing
my_list = [[] for _ in range(1068)] #wikimath
another_list = random.sample(range(0, 576), 300)
for i in range(0, 1068):
my_list[i] = another_list
mindex = my_listplans_stgcn_block = {
'max_iteration': 10,
'method': ['STGCN', 'IT-STGCN'],
'mindex': [mindex],
'lags': [8],
'nof_filters': [12],
'inter_method': ['linear'],
'epoch': [50]
}plnr = itstgcnEvolveGCNH.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader3,dataset_name='wikimath')
plnr.simulate(mindex=mindex,mtype='block')plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0.8],
'lags': [4],
'nof_filters': [12],
'inter_method': ['nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader10,dataset_name='monte')
plnr.simulate()plans_stgcn_rand = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mrate': [0],
'lags': [4],
'nof_filters': [12],
'inter_method': ['nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_RAND(plans_stgcn_rand,loader10,dataset_name='monte')
plnr.simulate()my_list = [[] for _ in range(675)] #monte
another_list = list(range(200,350)) #743
for i in np.array(random.sample(range(0, 675), 400)):
my_list[i] = another_list
mindex = my_list# mindex= [[],[],[],list(range(50,150)),[]] # node 1
# mindex= [list(range(10,100)),[],list(range(50,80)),[],[]] # node 2
# mindex= [list(range(10,100)),[],list(range(50,80)),list(range(50,150)),[]] # node3
plans_stgcn_block = {
'max_iteration': 15,
'method': ['STGCN', 'IT-STGCN'],
'mindex': [mindex],
'lags': [4],
'nof_filters': [12],
'inter_method': ['nearest'],
'epoch': [50]
}plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader10,dataset_name='monte')
plnr.simulate(mindex=mindex,mtype='block')plnr = itstgcnGConvLSTM.planner.PLNR_STGCN_MANUAL(plans_stgcn_block,loader10,dataset_name='monte')
plnr.simulate(mindex=mindex,mtype='block')