Simulation Tables
import
data_fivenodes = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_fivedones_Simulation.csv')
data_chickenpox = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_chikenpox_Simulation.csv')
data_pedal = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_pedalme_Simulation.csv')
data_pedal2 = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_pedalme_Simulation_itstgcnsnd.csv')
data__wiki = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_wikimath.csv')
data_wiki_GSO = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_wikimath_GSO_st.csv')
data_windmillsmall = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_windmillsmall.csv')
data_monte = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_monte.csv')
data = pd.concat([data_fivenodes,data_chickenpox,data_pedal,data__wiki,data_windmillsmall,data_monte]);data
0 |
fivenodes |
STGCN |
0.7 |
rand |
2 |
12 |
linear |
50 |
1.145873 |
10.957345 |
1 |
fivenodes |
STGCN |
0.7 |
rand |
2 |
12 |
nearest |
50 |
1.094555 |
12.740510 |
2 |
fivenodes |
IT-STGCN |
0.7 |
rand |
2 |
12 |
linear |
50 |
1.145589 |
19.806524 |
3 |
fivenodes |
IT-STGCN |
0.7 |
rand |
2 |
12 |
nearest |
50 |
1.208142 |
17.870021 |
4 |
fivenodes |
STGCN |
0.7 |
rand |
2 |
12 |
linear |
50 |
1.158356 |
12.736769 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
355 |
monte |
IT-STGCN |
0.7 |
rand |
4 |
12 |
nearest |
50 |
1.735651 |
346.335709 |
356 |
monte |
STGCN |
0.7 |
rand |
4 |
12 |
nearest |
50 |
2.144485 |
102.588985 |
357 |
monte |
IT-STGCN |
0.7 |
rand |
4 |
12 |
nearest |
50 |
1.576014 |
245.449893 |
358 |
monte |
STGCN |
0.7 |
rand |
4 |
12 |
nearest |
50 |
2.426680 |
53.503511 |
359 |
monte |
IT-STGCN |
0.7 |
rand |
4 |
12 |
nearest |
50 |
2.329690 |
333.370776 |
2880 rows × 10 columns
data.to_csv('./simulation_results/Real_simulation_reshape/Final_Simulation_EvolveGCNO.csv',index=False)
pedal_wiki_GSO = pd.concat([data_pedal2,data_wiki_GSO])
pedal_wiki_GSO.to_csv('./simulation_results/Real_simulation_reshape/Final_Simulation_EvolveGCNO_pedal_wiki_GSO.csv',index=False)
Fivenodes
Baseline
pd.merge(data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].mean().reset_index(),
data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].std().reset_index(),
on=['method','nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
12 |
IT-STGCN |
2 |
1.172 |
0.064 |
1 |
12 |
STGCN |
2 |
1.164 |
0.065 |
Random
pd.merge(data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
on=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==12")
0 |
0.7 |
12 |
IT-STGCN |
2 |
1.173 |
0.048 |
1 |
0.7 |
12 |
STGCN |
2 |
1.201 |
0.064 |
2 |
0.8 |
12 |
IT-STGCN |
2 |
1.209 |
0.073 |
3 |
0.8 |
12 |
STGCN |
2 |
1.216 |
0.058 |
Block
pd.merge(data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].mean().reset_index(),
data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].std().reset_index(),
on=['method','nof_filters','mrate']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.125 |
12 |
IT-STGCN |
1.165 |
0.051 |
1 |
0.125 |
12 |
STGCN |
1.185 |
0.061 |
ChickenpoxDatasetLoader(lags=4)
Baseline
pd.merge(data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].mean().reset_index(),
data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].std().reset_index(),
on=['method','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
32 |
IT-STGCN |
0.984 |
0.016 |
1 |
32 |
STGCN |
0.988 |
0.019 |
Random
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
on=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.3 |
linear |
32 |
IT-STGCN |
0.998 |
0.019 |
1 |
0.3 |
linear |
32 |
STGCN |
1.054 |
0.011 |
2 |
0.8 |
linear |
32 |
IT-STGCN |
1.161 |
0.054 |
3 |
0.8 |
linear |
32 |
STGCN |
1.234 |
0.096 |
Block
pd.merge(data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].mean().reset_index(),
data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].std().reset_index(),
on=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'})
0 |
linear |
0.28777 |
32 |
IT-STGCN |
1.002350 |
0.015102 |
1 |
linear |
0.28777 |
32 |
STGCN |
1.027605 |
0.015945 |
2 |
nearest |
0.28777 |
32 |
IT-STGCN |
0.998713 |
0.021721 |
3 |
nearest |
0.28777 |
32 |
STGCN |
1.025797 |
0.014844 |
PedalMeDatasetLoader (lags=4)
Baseline
pd.merge(data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
on=['method','lags','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
0 |
4 |
2 |
IT-STGCN |
1.213 |
0.045 |
1 |
4 |
2 |
STGCN |
1.234 |
0.055 |
Random
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.3 |
4 |
linear |
IT-STGCN |
1.251 |
0.072 |
1 |
0.3 |
4 |
linear |
STGCN |
1.267 |
0.072 |
2 |
0.3 |
4 |
nearest |
IT-STGCN |
1.251 |
0.057 |
3 |
0.3 |
4 |
nearest |
STGCN |
1.265 |
0.056 |
4 |
0.6 |
4 |
linear |
IT-STGCN |
1.280 |
0.065 |
5 |
0.6 |
4 |
linear |
STGCN |
1.305 |
0.092 |
6 |
0.6 |
4 |
nearest |
IT-STGCN |
1.267 |
0.067 |
7 |
0.6 |
4 |
nearest |
STGCN |
1.292 |
0.075 |
Block
pd.merge(data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
0 |
0.286 |
4 |
linear |
IT-STGCN |
1.246 |
0.034 |
1 |
0.286 |
4 |
linear |
STGCN |
1.230 |
0.056 |
2 |
0.286 |
4 |
nearest |
IT-STGCN |
1.245 |
0.045 |
3 |
0.286 |
4 |
nearest |
STGCN |
1.246 |
0.035 |
W_st
pd.merge(data_pedal2.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
data_pedal2.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
0 |
0.3 |
4 |
linear |
IT-STGCN |
1.223 |
0.041 |
1 |
0.3 |
4 |
linear |
STGCN |
1.263 |
0.048 |
2 |
0.3 |
4 |
nearest |
IT-STGCN |
1.234 |
0.046 |
3 |
0.3 |
4 |
nearest |
STGCN |
1.252 |
0.071 |
4 |
0.6 |
4 |
linear |
IT-STGCN |
1.269 |
0.092 |
5 |
0.6 |
4 |
linear |
STGCN |
1.304 |
0.061 |
6 |
0.6 |
4 |
nearest |
IT-STGCN |
1.248 |
0.072 |
7 |
0.6 |
4 |
nearest |
STGCN |
1.321 |
0.094 |
pd.merge(data_pedal2.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
data_pedal2.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
0 |
0.286 |
4 |
linear |
IT-STGCN |
1.204 |
0.033 |
1 |
0.286 |
4 |
linear |
STGCN |
1.210 |
0.058 |
2 |
0.286 |
4 |
nearest |
IT-STGCN |
1.211 |
0.033 |
3 |
0.286 |
4 |
nearest |
STGCN |
1.241 |
0.095 |
WikiMathsDatasetLoader (lags=8)
Baseline
pd.merge(data.query("dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
data.query("dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
on=['lags','nof_filters','method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
8 |
12 |
IT-STGCN |
0.735 |
0.023 |
1 |
8 |
12 |
STGCN |
0.734 |
0.025 |
Random
pd.merge(data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.3 |
8 |
IT-STGCN |
0.738 |
0.018 |
1 |
0.3 |
8 |
STGCN |
0.743 |
0.024 |
2 |
0.5 |
8 |
IT-STGCN |
0.744 |
0.021 |
3 |
0.5 |
8 |
STGCN |
0.759 |
0.021 |
4 |
0.6 |
8 |
IT-STGCN |
0.745 |
0.019 |
5 |
0.6 |
8 |
STGCN |
0.775 |
0.026 |
6 |
0.8 |
8 |
IT-STGCN |
0.780 |
0.027 |
7 |
0.8 |
8 |
STGCN |
0.863 |
0.038 |
Block
pd.merge(data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'})
0 |
0.119837 |
8 |
IT-STGCN |
0.732454 |
0.025087 |
1 |
0.119837 |
8 |
STGCN |
0.734875 |
0.021822 |
missing values on the same nodes
pd.merge(data_wiki_GSO.groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
data_wiki_GSO.groupby(['mrate','lags','method'])['mse'].std().reset_index(),
on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.512 |
8 |
IT-STGCN |
0.745 |
0.017 |
1 |
0.512 |
8 |
STGCN |
0.753 |
0.026 |
WindmillOutputSmallDatasetLoader (lags=8)
Baseline
pd.merge(data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
on=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
8 |
IT-STGCN |
0.984 |
0.001 |
1 |
8 |
STGCN |
0.983 |
0.001 |
Random
pd.merge(data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.7 |
8 |
IT-STGCN |
1.149 |
0.026 |
1 |
0.7 |
8 |
STGCN |
1.495 |
0.137 |
Block
pd.merge(data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
0.081 |
8 |
IT-STGCN |
0.983 |
0.002 |
1 |
0.081 |
8 |
STGCN |
0.990 |
0.002 |
Montevideobus (lags=4)
Baseline
pd.merge(data.query("dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
data.query("dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
on=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
0 |
4 |
IT-STGCN |
1.317 |
0.118 |
1 |
4 |
STGCN |
0.997 |
0.004 |
Random
pd.merge(data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
on=['mrate','inter_method','method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'})
0 |
0.3 |
4 |
nearest |
IT-STGCN |
1.401606 |
0.147293 |
1 |
0.3 |
4 |
nearest |
STGCN |
1.634467 |
0.161082 |
2 |
0.5 |
4 |
nearest |
IT-STGCN |
1.457940 |
0.093312 |
3 |
0.5 |
4 |
nearest |
STGCN |
1.928135 |
0.303906 |
4 |
0.7 |
4 |
nearest |
IT-STGCN |
1.968742 |
0.235623 |
5 |
0.7 |
4 |
nearest |
STGCN |
2.447478 |
0.499375 |
6 |
0.8 |
4 |
nearest |
IT-STGCN |
2.263371 |
0.476410 |
7 |
0.8 |
4 |
nearest |
STGCN |
2.622998 |
0.693321 |
Block
pd.merge(data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
on=['method','mrate','inter_method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'})
0 |
0.149142 |
4 |
nearest |
IT-STGCN |
1.345316 |
0.110313 |
1 |
0.149142 |
4 |
nearest |
STGCN |
1.766133 |
0.123163 |
Check
import itstgcnEvolveGCNO
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class Eval_csy:
def __init__(self,learner,train_dataset):
self.learner = learner
# self.learner.model.eval()
try:self.learner.model.eval()
except:pass
self.train_dataset = train_dataset
self.lags = self.learner.lags
rslt_tr = self.learner(self.train_dataset)
self.X_tr = rslt_tr['X']
self.y_tr = rslt_tr['y']
self.f_tr = torch.concat([self.train_dataset[0].x.T,self.y_tr],axis=0).float()
self.yhat_tr = rslt_tr['yhat']
self.fhat_tr = torch.concat([self.train_dataset[0].x.T,self.yhat_tr],axis=0).float()
T = 500
t = np.arange(T)/T * 5
x = 1*np.sin(2*t)+np.sin(4*t)+1.5*np.sin(7*t)
eps_x = np.random.normal(size=T)*0
y = x.copy()
for i in range(2,T):
y[i] = 0.35*x[i-1] - 0.15*x[i-2] + 0.5*np.cos(0.4*t[i])
eps_y = np.random.normal(size=T)*0
x = x
y = y
plt.plot(t,x,color='C0',lw=5)
plt.plot(t,x+eps_x,alpha=0.5,color='C0')
plt.plot(t,y,color='C1',lw=5)
plt.plot(t,y+eps_y,alpha=0.5,color='C1')
_node_ids = {'node1':0, 'node2':1}
_FX1 = np.stack([x+eps_x,y+eps_y],axis=1).tolist()
_edges1 = torch.tensor([[0,1]]).tolist()
data_dict1 = {'edges':_edges1, 'node_ids':_node_ids, 'FX':_FX1}
# save_data(data_dict1, './data/toy_example1.pkl')
data1 = pd.DataFrame({'x':x,'y':y,'xer':x,'yer':y})
# save_data(data1, './data/toy_example_true1.csv')
loader1 = itstgcnEvolveGCNO.DatasetLoader(data_dict1)
dataset = loader1.get_dataset(lags=4)
mindex = itstgcn.rand_mindex(dataset,mrate=0) dataset_miss = itstgcn.miss(dataset,mindex,mtype=‘rand’)
mindex = [random.sample(range(0, T), int(T*0.8)),[np.array(list(range(20,30)))]]
dataset_miss = itstgcnEvolveGCNO.miss(dataset,mindex,mtype='block')
dataset_padded = itstgcnEvolveGCNO.padding(dataset_miss,interpolation_method='linear')
-
학습
lrnr = itstgcnEvolveGCNO.StgcnLearner(dataset_padded)
lrnr.learn(filters=16,epoch=5)
lrnr1 = itstgcnEvolveGCNO.ITStgcnLearner(dataset_padded)
lrnr1.learn(filters=16,epoch=5)
evtor = Eval_csy(lrnr,dataset_padded)
evtor1 = Eval_csy(lrnr1,dataset_padded)
with plt.style.context('seaborn-white'):
fig, ax = plt.subplots(figsize=(20,10))
ax.plot(evtor.f_tr[:,0],'--o',color='black',alpha=0.5,label='Imputation')
ax.plot(data1['x'][:],'-',color='grey',label='Complete Data')
ax.plot(evtor.fhat_tr[:,0],color='brown',lw=3,label='STGCN')
ax.plot(evtor1.fhat_tr[:,0],color='blue',lw=3,label='ITSTGCN')
ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
ax.tick_params(axis='y', labelsize=20)
ax.tick_params(axis='x', labelsize=20)
with plt.style.context('seaborn-white'):
fig, ax = plt.subplots(figsize=(20,10))
ax.plot(evtor.f_tr[:,1],'--o',color='black',alpha=0.5,label='Imputation')
ax.plot(data1['y'][:],'-',color='grey',label='Complete Data')
ax.plot(evtor.fhat_tr[:,1],color='brown',lw=3,label='STGCN')
ax.plot(evtor1.fhat_tr[:,1],color='blue',lw=3,label='ITSTGCN')
ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
ax.tick_params(axis='y', labelsize=20)
ax.tick_params(axis='x', labelsize=20)
import itstgcnsnd
import torch
import numpy as np
loader1 = itstgcnsnd.DatasetLoader(data_dict1)
dataset = loader1.get_dataset(lags=2)
mindex = itstgcn.rand_mindex(dataset,mrate=0) dataset_miss = itstgcn.miss(dataset,mindex,mtype=‘rand’)
mindex = [random.sample(range(0, T), int(T*0.5)),[np.array(list(range(20,30)))]]
dataset_miss = itstgcnsnd.miss(dataset,mindex,mtype='block')
dataset_padded = itstgcnsnd.padding(dataset_miss,interpolation_method='linear')
-
학습
lrnr = itstgcnsnd.StgcnLearner(dataset_padded)
lrnr.learn(filters=32,epoch=5)
lrnr1 = itstgcnsnd.ITStgcnLearner(dataset_padded)
lrnr1.learn(filters=32,epoch=5)
evtor = Eval_csy(lrnr,dataset_padded)
evtor1 = Eval_csy(lrnr1,dataset_padded)
with plt.style.context('seaborn-white'):
fig, ax = plt.subplots(figsize=(20,10))
ax.plot(evtor.f_tr[:,0],'--o',color='black',alpha=0.5,label='Imputation')
ax.plot(data1['x'][:],'-',color='grey',label='Complete Data')
ax.plot(evtor.fhat_tr[:,0],color='brown',lw=3,label='STGCN')
ax.plot(evtor1.fhat_tr[:,0],color='blue',lw=3,label='ITSTGCN')
ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
ax.tick_params(axis='y', labelsize=20)
ax.tick_params(axis='x', labelsize=20)
with plt.style.context('seaborn-white'):
fig, ax = plt.subplots(figsize=(20,10))
ax.plot(evtor.f_tr[:,1],'--o',color='black',alpha=0.5,label='Imputation')
ax.plot(data1['y'][:],'-',color='grey',label='Complete Data')
ax.plot(evtor.fhat_tr[:,1],color='brown',lw=3,label='STGCN')
ax.plot(evtor1.fhat_tr[:,1],color='blue',lw=3,label='ITSTGCN')
ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
ax.tick_params(axis='y', labelsize=20)
ax.tick_params(axis='x', labelsize=20)
hyperparameter
WindmillOutputSmallDatasetLoader()
import itstgcn
data_dict = itstgcn.load_data('./data/fivenodes.pkl')
loader = itstgcn.DatasetLoader(data_dict)
from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader
loader1 = ChickenpoxDatasetLoader()
from torch_geometric_temporal.dataset import PedalMeDatasetLoader
loader2 = PedalMeDatasetLoader()
from torch_geometric_temporal.dataset import WikiMathsDatasetLoader
loader3 = WikiMathsDatasetLoader()
# from torch_geometric_temporal.dataset import WindmillOutputSmallDatasetLoader
# loader6 = WindmillOutputSmallDatasetLoader()
from torch_geometric_temporal.dataset import MontevideoBusDatasetLoader
loader10 = MontevideoBusDatasetLoader()
try:
from tqdm import tqdm
except ImportError:
def tqdm(iterable):
return iterable
fivenodes |
GConvGRU |
IT-STGCN |
0.7 |
12 |
2 |
1.167 |
0.059 |
fivenodes |
GConvGRU |
STGCN |
0.7 |
12 |
2 |
2.077 |
0.252 |
chickenpox |
GConvGRU |
IT-STGCN |
0.8 |
16 |
4 |
1.586 |
0.199 |
chickenpox |
GConvGRU |
STGCN |
0.8 |
16 |
4 |
2.529 |
0.292 |
pedalme |
GConvGRU |
IT-STGCN |
0.6 |
12 |
4 |
1.571 |
0.277 |
pedalme |
GConvGRU |
STGCN |
0.6 |
12 |
4 |
1.753 |
0.239 |
wikimath |
GConvGRU |
IT-STGCN |
0.8 |
12 |
8 |
0.687 |
0.021 |
wikimath |
GConvGRU |
STGCN |
0.8 |
12 |
8 |
0.932 |
0.04 |
windmillsmall |
GConvGRU |
IT-STGCN |
0.7 |
12 |
8 |
1.180 |
0.035 |
windmillsmall |
GConvGRU |
STGCN |
0.7 |
12 |
8 |
1.636 |
0.088 |
monte |
GConvGRU |
IT-STGCN |
0.8 |
12 |
4 |
1.096 |
0.019 |
monte |
GConvGRU |
STGCN |
0.8 |
12 |
4 |
1.516 |
0.040 |
Init signature:
EvolveGCNO(
in_channels: int,
improved: bool = False,
cached: bool = False,
normalize: bool = True,
add_self_loops: bool = True,
)
Docstring:
An implementation of the Evolving Graph Convolutional without Hidden Layer.
For details see this paper: `"EvolveGCN: Evolving Graph Convolutional
Networks for Dynamic Graph." <https://arxiv.org/abs/1902.10191>`_
Args:
in_channels (int): Number of filters.
improved (bool, optional): If set to :obj:`True`, the layer computes
:math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.
(default: :obj:`False`)
cached (bool, optional): If set to :obj:`True`, the layer will cache
the computation of :math:`\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2}` on first execution, and will use the
cached version for further executions.
This parameter should only be set to :obj:`True` in transductive
learning scenarios. (default: :obj:`False`)
normalize (bool, optional): Whether to add self-loops and apply
symmetric normalization. (default: :obj:`True`)
add_self_loops (bool, optional): If set to :obj:`False`, will not add
self-loops to the input graph. (default: :obj:`True`)
Init docstring: Initializes internal Module state, shared by both nn.Module and ScriptModule.
File: ~/anaconda3/envs/temp_csy/lib/python3.8/site-packages/torch_geometric_temporal/nn/recurrent/evolvegcno.py
Type: type
Subclasses:
import torch
import torch.nn.functional as F
from torch_geometric_temporal.nn.recurrent import EvolveGCNO
# from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader
from torch_geometric_temporal.signal import temporal_signal_split
# loader1 = ChickenpoxDatasetLoader()
dataset = loader.get_dataset(lags=2)
dataset1 = loader1.get_dataset(lags=4)
dataset2 = loader2.get_dataset(lags=4)
dataset3 = loader3.get_dataset(lags=8)
# dataset6 = loader6.get_dataset(lags=8)
dataset10 = loader10.get_dataset(lags=4)
train_dataset, test_dataset = temporal_signal_split(dataset, train_ratio=0.2)
train_dataset1, test_dataset1 = temporal_signal_split(dataset1, train_ratio=0.2)
train_dataset2, test_dataset2 = temporal_signal_split(dataset2, train_ratio=0.2)
train_dataset3, test_dataset3 = temporal_signal_split(dataset3, train_ratio=0.2)
# train_dataset6, test_dataset6 = temporal_signal_split(dataset6, train_ratio=0.2)
train_dataset10, test_dataset10 = temporal_signal_split(dataset10, train_ratio=0.2)
# _a = itstgcn.load_data('./data/Windmillsmall.pkl')
dataset6 = _a.get_dataset(lags=8)
train_dataset6, test_dataset6 = temporal_signal_split(dataset6, train_ratio=0.2)
class RecurrentGCN(torch.nn.Module):
def __init__(self, node_features):
super(RecurrentGCN, self).__init__()
self.recurrent = EvolveGCNO(node_features)
self.linear = torch.nn.Linear(node_features, 1)
def forward(self, x, edge_index, edge_weight):
h = self.recurrent(x, edge_index, edge_weight)
h = F.relu(h)
h = self.linear(h)
return h
fivenodes Nodes = 2, Filters =
model = RecurrentGCN(node_features=2)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
model.train()
for epoch in tqdm(range(200)):
cost = 0
_b=[]
_d=[]
for time, snapshot in enumerate(train_dataset):
y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_b.append(y_hat)
_d.append(cost)
cost = cost / (time+1)
cost.backward(retain_graph=True)
optimizer.step()
optimizer.zero_grad()
100%|██████████| 200/200 [00:09<00:00, 20.06it/s]
model.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset):
if time == 0:
model.recurrent.weight = None
y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_a.append(y_hat)
_a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
_c = [_a1[i].detach() for i in range(len(_a1))]
_e = [_d[i].detach() for i in range(len(_d))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))
ax1.set_title('train node1')
ax1.plot([train_dataset.targets[i][0] for i in range(train_dataset.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset.snapshot_count)]))
ax2.set_title('test node1')
ax2.plot([test_dataset.targets[i][0] for i in range(test_dataset.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset.snapshot_count)]))
ax3.set_title('train node2')
ax3.plot([train_dataset.targets[i][1] for i in range(train_dataset.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset.snapshot_count)]))
ax4.set_title('test node2')
ax4.plot([test_dataset.targets[i][1] for i in range(test_dataset.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset.snapshot_count)]))
ax5.set_title('train cost')
ax5.plot(_e)
ax6.set_title('test cost')
ax6.plot(_c)
Chickenpox Nodes = 4, Filters = 12
model1 = RecurrentGCN(node_features=4)
optimizer1 = torch.optim.Adam(model1.parameters(), lr=0.01)
model1.train()
for epoch in tqdm(range(200)):
cost = 0
_b=[]
_d=[]
for time, snapshot in enumerate(train_dataset1):
y_hat = model1(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_b.append(y_hat)
_d.append(cost)
cost = cost / (time+1)
cost.backward(retain_graph=True)
optimizer1.step()
optimizer1.zero_grad()
100%|██████████| 200/200 [00:30<00:00, 6.58it/s]
model1.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset1):
if time == 0:
model1.recurrent.weight = None
y_hat = model1(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_a.append(y_hat)
_a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))
ax1.set_title('train node1')
ax1.plot([train_dataset1.targets[i][0] for i in range(train_dataset1.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset1.snapshot_count)]))
ax2.set_title('test node1')
ax2.plot([test_dataset1.targets[i][0] for i in range(test_dataset1.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset1.snapshot_count)]))
ax3.set_title('train node2')
ax3.plot([train_dataset1.targets[i][1] for i in range(train_dataset1.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset1.snapshot_count)]))
ax4.set_title('test node2')
ax4.plot([test_dataset1.targets[i][1] for i in range(test_dataset1.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset1.snapshot_count)]))
ax5.set_title('train cost')
ax5.plot(_e)
ax6.set_title('test cost')
ax6.plot(_c)
Pedalme Nodes = 4, Filters =
model2 = RecurrentGCN(node_features=4)
optimizer2 = torch.optim.Adam(model2.parameters(), lr=0.01)
model2.train()
for epoch in tqdm(range(200)):
cost = 0
_b=[]
_d=[]
for time, snapshot in enumerate(train_dataset2):
y_hat = model2(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_b.append(y_hat)
_d.append(cost)
cost = cost / (time+1)
cost.backward(retain_graph=True)
optimizer2.step()
optimizer2.zero_grad()
100%|██████████| 200/200 [00:01<00:00, 101.86it/s]
model2.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset2):
if time == 0:
model2.recurrent.weight = None
y_hat = model2(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_a.append(y_hat)
_a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))
ax1.set_title('train node1')
ax1.plot([train_dataset2.targets[i][0] for i in range(train_dataset2.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset2.snapshot_count)]))
ax2.set_title('test node1')
ax2.plot([test_dataset2.targets[i][0] for i in range(test_dataset2.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset2.snapshot_count)]))
ax3.set_title('train node2')
ax3.plot([train_dataset2.targets[i][1] for i in range(train_dataset2.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset2.snapshot_count)]))
ax4.set_title('test node2')
ax4.plot([test_dataset2.targets[i][1] for i in range(test_dataset2.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset2.snapshot_count)]))
ax5.set_title('train cost')
ax5.plot(_e)
ax6.set_title('test cost')
ax6.plot(_c)
Wikimaths Nodes = 8, Filters =
model3 = RecurrentGCN(node_features=8)
optimizer3 = torch.optim.Adam(model3.parameters(), lr=0.01)
model3.train()
for epoch in tqdm(range(50)):
cost = 0
_b=[]
_d=[]
for time, snapshot in enumerate(train_dataset3):
y_hat = model3(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_b.append(y_hat)
_d.append(cost)
cost = cost / (time+1)
cost.backward(retain_graph=True)
optimizer3.step()
optimizer3.zero_grad()
100%|██████████| 50/50 [02:50<00:00, 3.42s/it]
model3.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset3):
if time == 0:
model3.recurrent.weight = None
y_hat = model3(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_a.append(y_hat)
_a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))
ax1.set_title('train node1')
ax1.plot([train_dataset3.targets[i][0] for i in range(train_dataset3.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset3.snapshot_count)]))
ax2.set_title('test node1')
ax2.plot([test_dataset3.targets[i][0] for i in range(test_dataset3.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset3.snapshot_count)]))
ax3.set_title('train node2')
ax3.plot([train_dataset3.targets[i][1] for i in range(train_dataset3.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset3.snapshot_count)]))
ax4.set_title('test node2')
ax4.plot([test_dataset3.targets[i][1] for i in range(test_dataset3.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset3.snapshot_count)]))
ax5.set_title('train cost')
ax5.plot(_e)
ax6.set_title('test cost')
ax6.plot(_c)
Windmillsmall Nodes = 8, Filters =
model6 = RecurrentGCN(node_features=8)
optimizer6 = torch.optim.Adam(model6.parameters(), lr=0.01)
model6.train()
for epoch in tqdm(range(10)):
cost = 0
_b=[]
_d=[]
for time, snapshot in enumerate(train_dataset6):
y_hat = model6(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_b.append(y_hat)
_d.append(cost)
cost = cost / (time+1)
cost.backward(retain_graph=True)
optimizer6.step()
optimizer6.zero_grad()
100%|██████████| 10/10 [00:49<00:00, 4.97s/it]
model6.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset6):
if time == 0:
model6.recurrent.weight = None
y_hat = model6(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_a.append(y_hat)
_a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))
ax1.set_title('train node1')
ax1.plot([train_dataset6.targets[i][0] for i in range(train_dataset6.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset6.snapshot_count)]))
ax2.set_title('test node1')
ax2.plot([test_dataset6.targets[i][0] for i in range(test_dataset6.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset6.snapshot_count)]))
ax3.set_title('train node2')
ax3.plot([train_dataset6.targets[i][1] for i in range(train_dataset6.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset6.snapshot_count)]))
ax4.set_title('test node2')
ax4.plot([test_dataset6.targets[i][1] for i in range(test_dataset6.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset6.snapshot_count)]))
ax5.set_title('train cost')
ax5.plot(_e)
ax6.set_title('test cost')
ax6.plot(_c)
Monte Nodes = 4, Filters =
model10 = RecurrentGCN(node_features=4)
optimizer10 = torch.optim.Adam(model10.parameters(), lr=0.01)
model10.train()
for epoch in tqdm(range(200)):
cost = 0
_b=[]
_d=[]
for time, snapshot in enumerate(train_dataset10):
y_hat = model10(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_b.append(y_hat)
_d.append(cost)
cost = cost / (time+1)
cost.backward(retain_graph=True)
optimizer10.step()
optimizer10.zero_grad()
100%|██████████| 200/200 [01:38<00:00, 2.04it/s]
model10.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset10):
if time == 0:
model10.recurrent.weight = None
y_hat = model10(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
cost = cost + torch.mean((y_hat-snapshot.y)**2)
_a.append(y_hat)
_a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))
ax1.set_title('train node1')
ax1.plot([train_dataset10.targets[i][0] for i in range(train_dataset10.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset10.snapshot_count)]))
ax2.set_title('test node1')
ax2.plot([test_dataset10.targets[i][0] for i in range(test_dataset10.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset10.snapshot_count)]))
ax3.set_title('train node2')
ax3.plot([train_dataset10.targets[i][10] for i in range(train_dataset10.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[10] for i in range(train_dataset10.snapshot_count)]))
ax4.set_title('test node2')
ax4.plot([test_dataset10.targets[i][10] for i in range(test_dataset10.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[10] for i in range(test_dataset10.snapshot_count)]))
ax5.set_title('train cost')
ax5.plot(_e)
ax6.set_title('test cost')
ax6.plot(_c)