EvolveGCNO_Simulation Tables_reshape

ITSTGCN
Author

SEOYEON CHOI

Published

June 25, 2023

Simulation Tables

import

import pandas as pd
data_fivenodes = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_fivedones_Simulation.csv')
data_chickenpox = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_chikenpox_Simulation.csv')
data_pedal = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_pedalme_Simulation.csv')
data_pedal2 = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_pedalme_Simulation_itstgcnsnd.csv')
data__wiki = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_wikimath.csv')
data_wiki_GSO = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_wikimath_GSO_st.csv')
data_windmillsmall = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_windmillsmall.csv')
data_monte = pd.read_csv('./simulation_results/Real_simulation_reshape/EvolveGCNO_monte.csv')
data = pd.concat([data_fivenodes,data_chickenpox,data_pedal,data__wiki,data_windmillsmall,data_monte]);data
dataset method mrate mtype lags nof_filters inter_method epoch mse calculation_time
0 fivenodes STGCN 0.7 rand 2 12 linear 50 1.145873 10.957345
1 fivenodes STGCN 0.7 rand 2 12 nearest 50 1.094555 12.740510
2 fivenodes IT-STGCN 0.7 rand 2 12 linear 50 1.145589 19.806524
3 fivenodes IT-STGCN 0.7 rand 2 12 nearest 50 1.208142 17.870021
4 fivenodes STGCN 0.7 rand 2 12 linear 50 1.158356 12.736769
... ... ... ... ... ... ... ... ... ... ...
355 monte IT-STGCN 0.7 rand 4 12 nearest 50 1.735651 346.335709
356 monte STGCN 0.7 rand 4 12 nearest 50 2.144485 102.588985
357 monte IT-STGCN 0.7 rand 4 12 nearest 50 1.576014 245.449893
358 monte STGCN 0.7 rand 4 12 nearest 50 2.426680 53.503511
359 monte IT-STGCN 0.7 rand 4 12 nearest 50 2.329690 333.370776

2880 rows × 10 columns

data.to_csv('./simulation_results/Real_simulation_reshape/Final_Simulation_EvolveGCNO.csv',index=False)
pedal_wiki_GSO = pd.concat([data_pedal2,data_wiki_GSO])
pedal_wiki_GSO.to_csv('./simulation_results/Real_simulation_reshape/Final_Simulation_EvolveGCNO_pedal_wiki_GSO.csv',index=False)

Fivenodes

Baseline

pd.merge(data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].mean().reset_index(),
         data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].std().reset_index(),
         on=['method','nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
nof_filters method lags mean std
0 12 IT-STGCN 2 1.172 0.064
1 12 STGCN 2 1.164 0.065

Random

pd.merge(data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
         data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
         on=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==12")
mrate nof_filters method lags mean std
0 0.7 12 IT-STGCN 2 1.173 0.048
1 0.7 12 STGCN 2 1.201 0.064
2 0.8 12 IT-STGCN 2 1.209 0.073
3 0.8 12 STGCN 2 1.216 0.058

Block

pd.merge(data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].mean().reset_index(),
         data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].std().reset_index(),
         on=['method','nof_filters','mrate']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate nof_filters method mean std
0 0.125 12 IT-STGCN 1.165 0.051
1 0.125 12 STGCN 1.185 0.061

ChickenpoxDatasetLoader(lags=4)

Baseline

pd.merge(data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].mean().reset_index(),
         data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].std().reset_index(),
         on=['method','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
nof_filters method mean std
0 32 IT-STGCN 0.984 0.016
1 32 STGCN 0.988 0.019

Random

pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
         data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
         on=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate inter_method nof_filters method mean std
0 0.3 linear 32 IT-STGCN 0.998 0.019
1 0.3 linear 32 STGCN 1.054 0.011
2 0.8 linear 32 IT-STGCN 1.161 0.054
3 0.8 linear 32 STGCN 1.234 0.096

Block

pd.merge(data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].mean().reset_index(),
         data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].std().reset_index(),
         on=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'})
inter_method mrate nof_filters method mean std
0 linear 0.28777 32 IT-STGCN 1.002350 0.015102
1 linear 0.28777 32 STGCN 1.027605 0.015945
2 nearest 0.28777 32 IT-STGCN 0.998713 0.021721
3 nearest 0.28777 32 STGCN 1.025797 0.014844

PedalMeDatasetLoader (lags=4)

Baseline

pd.merge(data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
         data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
         on=['method','lags','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
lags nof_filters method mean std
0 4 2 IT-STGCN 1.213 0.045
1 4 2 STGCN 1.234 0.055

Random

pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
         data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate lags inter_method method mean std
0 0.3 4 linear IT-STGCN 1.251 0.072
1 0.3 4 linear STGCN 1.267 0.072
2 0.3 4 nearest IT-STGCN 1.251 0.057
3 0.3 4 nearest STGCN 1.265 0.056
4 0.6 4 linear IT-STGCN 1.280 0.065
5 0.6 4 linear STGCN 1.305 0.092
6 0.6 4 nearest IT-STGCN 1.267 0.067
7 0.6 4 nearest STGCN 1.292 0.075

Block

pd.merge(data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
         data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
mrate lags inter_method method mean std
0 0.286 4 linear IT-STGCN 1.246 0.034
1 0.286 4 linear STGCN 1.230 0.056
2 0.286 4 nearest IT-STGCN 1.245 0.045
3 0.286 4 nearest STGCN 1.246 0.035

W_st

pd.merge(data_pedal2.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
         data_pedal2.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
mrate lags inter_method method mean std
0 0.3 4 linear IT-STGCN 1.223 0.041
1 0.3 4 linear STGCN 1.263 0.048
2 0.3 4 nearest IT-STGCN 1.234 0.046
3 0.3 4 nearest STGCN 1.252 0.071
4 0.6 4 linear IT-STGCN 1.269 0.092
5 0.6 4 linear STGCN 1.304 0.061
6 0.6 4 nearest IT-STGCN 1.248 0.072
7 0.6 4 nearest STGCN 1.321 0.094
pd.merge(data_pedal2.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
         data_pedal2.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4")
mrate lags inter_method method mean std
0 0.286 4 linear IT-STGCN 1.204 0.033
1 0.286 4 linear STGCN 1.210 0.058
2 0.286 4 nearest IT-STGCN 1.211 0.033
3 0.286 4 nearest STGCN 1.241 0.095

WikiMathsDatasetLoader (lags=8)

Baseline

pd.merge(data.query("dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
         data.query("dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
         on=['lags','nof_filters','method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
lags nof_filters method mean std
0 8 12 IT-STGCN 0.735 0.023
1 8 12 STGCN 0.734 0.025

Random

pd.merge(data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
         data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate lags method mean std
0 0.3 8 IT-STGCN 0.738 0.018
1 0.3 8 STGCN 0.743 0.024
2 0.5 8 IT-STGCN 0.744 0.021
3 0.5 8 STGCN 0.759 0.021
4 0.6 8 IT-STGCN 0.745 0.019
5 0.6 8 STGCN 0.775 0.026
6 0.8 8 IT-STGCN 0.780 0.027
7 0.8 8 STGCN 0.863 0.038

Block

pd.merge(data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
         data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'})
mrate lags method mean std
0 0.119837 8 IT-STGCN 0.732454 0.025087
1 0.119837 8 STGCN 0.734875 0.021822

missing values on the same nodes

pd.merge(data_wiki_GSO.groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
        data_wiki_GSO.groupby(['mrate','lags','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate lags method mean std
0 0.512 8 IT-STGCN 0.745 0.017
1 0.512 8 STGCN 0.753 0.026

WindmillOutputSmallDatasetLoader (lags=8)

Baseline

pd.merge(data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
         data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
         on=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
lags method mean std
0 8 IT-STGCN 0.984 0.001
1 8 STGCN 0.983 0.001

Random

pd.merge(data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
         data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate lags method mean std
0 0.7 8 IT-STGCN 1.149 0.026
1 0.7 8 STGCN 1.495 0.137

Block

pd.merge(data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
         data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
         on=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
mrate lags method mean std
0 0.081 8 IT-STGCN 0.983 0.002
1 0.081 8 STGCN 0.990 0.002

Montevideobus (lags=4)

Baseline

pd.merge(data.query("dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
         data.query("dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
         on=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3)
lags method mean std
0 4 IT-STGCN 1.317 0.118
1 4 STGCN 0.997 0.004

Random

pd.merge(data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
         data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
         on=['mrate','inter_method','method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'})
mrate lags inter_method method mean std
0 0.3 4 nearest IT-STGCN 1.401606 0.147293
1 0.3 4 nearest STGCN 1.634467 0.161082
2 0.5 4 nearest IT-STGCN 1.457940 0.093312
3 0.5 4 nearest STGCN 1.928135 0.303906
4 0.7 4 nearest IT-STGCN 1.968742 0.235623
5 0.7 4 nearest STGCN 2.447478 0.499375
6 0.8 4 nearest IT-STGCN 2.263371 0.476410
7 0.8 4 nearest STGCN 2.622998 0.693321

Block

pd.merge(data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
         data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
         on=['method','mrate','inter_method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'})
mrate lags inter_method method mean std
0 0.149142 4 nearest IT-STGCN 1.345316 0.110313
1 0.149142 4 nearest STGCN 1.766133 0.123163

Check

import itstgcnEvolveGCNO
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
class Eval_csy:
    def __init__(self,learner,train_dataset):
        self.learner = learner
        # self.learner.model.eval()
        try:self.learner.model.eval()
        except:pass
        self.train_dataset = train_dataset
        self.lags = self.learner.lags
        rslt_tr = self.learner(self.train_dataset) 
        self.X_tr = rslt_tr['X']
        self.y_tr = rslt_tr['y']
        self.f_tr = torch.concat([self.train_dataset[0].x.T,self.y_tr],axis=0).float()
        self.yhat_tr = rslt_tr['yhat']
        self.fhat_tr = torch.concat([self.train_dataset[0].x.T,self.yhat_tr],axis=0).float()
from plotnine import *
T = 500
t = np.arange(T)/T * 5

x = 1*np.sin(2*t)+np.sin(4*t)+1.5*np.sin(7*t)
eps_x  = np.random.normal(size=T)*0
y = x.copy()
for i in range(2,T):
    y[i] = 0.35*x[i-1] - 0.15*x[i-2] + 0.5*np.cos(0.4*t[i]) 
eps_y  = np.random.normal(size=T)*0
x = x
y = y
plt.plot(t,x,color='C0',lw=5)
plt.plot(t,x+eps_x,alpha=0.5,color='C0')
plt.plot(t,y,color='C1',lw=5)
plt.plot(t,y+eps_y,alpha=0.5,color='C1')
_node_ids = {'node1':0, 'node2':1}

_FX1 = np.stack([x+eps_x,y+eps_y],axis=1).tolist()

_edges1 = torch.tensor([[0,1]]).tolist()

data_dict1 = {'edges':_edges1, 'node_ids':_node_ids, 'FX':_FX1}

# save_data(data_dict1, './data/toy_example1.pkl')

data1 = pd.DataFrame({'x':x,'y':y,'xer':x,'yer':y})

# save_data(data1, './data/toy_example_true1.csv')

loader1 = itstgcnEvolveGCNO.DatasetLoader(data_dict1)
dataset = loader1.get_dataset(lags=4)

mindex = itstgcn.rand_mindex(dataset,mrate=0) dataset_miss = itstgcn.miss(dataset,mindex,mtype=‘rand’)

mindex = [random.sample(range(0, T), int(T*0.8)),[np.array(list(range(20,30)))]]
dataset_miss = itstgcnEvolveGCNO.miss(dataset,mindex,mtype='block')
dataset_padded = itstgcnEvolveGCNO.padding(dataset_miss,interpolation_method='linear')

- 학습

lrnr = itstgcnEvolveGCNO.StgcnLearner(dataset_padded)
lrnr.learn(filters=16,epoch=5)
5/5
lrnr1 = itstgcnEvolveGCNO.ITStgcnLearner(dataset_padded)
lrnr1.learn(filters=16,epoch=5)
5/5
evtor = Eval_csy(lrnr,dataset_padded)
evtor1 = Eval_csy(lrnr1,dataset_padded)
with plt.style.context('seaborn-white'):
    fig, ax = plt.subplots(figsize=(20,10))
    
    ax.plot(evtor.f_tr[:,0],'--o',color='black',alpha=0.5,label='Imputation')
    ax.plot(data1['x'][:],'-',color='grey',label='Complete Data')
    ax.plot(evtor.fhat_tr[:,0],color='brown',lw=3,label='STGCN')
    ax.plot(evtor1.fhat_tr[:,0],color='blue',lw=3,label='ITSTGCN')
    
    ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
    ax.tick_params(axis='y', labelsize=20)
    ax.tick_params(axis='x', labelsize=20)

with plt.style.context('seaborn-white'):
    fig, ax = plt.subplots(figsize=(20,10))
    
    ax.plot(evtor.f_tr[:,1],'--o',color='black',alpha=0.5,label='Imputation')
    ax.plot(data1['y'][:],'-',color='grey',label='Complete Data')
    ax.plot(evtor.fhat_tr[:,1],color='brown',lw=3,label='STGCN')
    ax.plot(evtor1.fhat_tr[:,1],color='blue',lw=3,label='ITSTGCN')
    
    ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
    ax.tick_params(axis='y', labelsize=20)
    ax.tick_params(axis='x', labelsize=20)

import itstgcnsnd
import torch
import numpy as np
loader1 = itstgcnsnd.DatasetLoader(data_dict1)
dataset = loader1.get_dataset(lags=2)

mindex = itstgcn.rand_mindex(dataset,mrate=0) dataset_miss = itstgcn.miss(dataset,mindex,mtype=‘rand’)

mindex = [random.sample(range(0, T), int(T*0.5)),[np.array(list(range(20,30)))]]
dataset_miss = itstgcnsnd.miss(dataset,mindex,mtype='block')
dataset_padded = itstgcnsnd.padding(dataset_miss,interpolation_method='linear')

- 학습

lrnr = itstgcnsnd.StgcnLearner(dataset_padded)
lrnr.learn(filters=32,epoch=5)
5/5
lrnr1 = itstgcnsnd.ITStgcnLearner(dataset_padded)
lrnr1.learn(filters=32,epoch=5)
5/5
evtor = Eval_csy(lrnr,dataset_padded)
evtor1 = Eval_csy(lrnr1,dataset_padded)
with plt.style.context('seaborn-white'):
    fig, ax = plt.subplots(figsize=(20,10))
    
    ax.plot(evtor.f_tr[:,0],'--o',color='black',alpha=0.5,label='Imputation')
    ax.plot(data1['x'][:],'-',color='grey',label='Complete Data')
    ax.plot(evtor.fhat_tr[:,0],color='brown',lw=3,label='STGCN')
    ax.plot(evtor1.fhat_tr[:,0],color='blue',lw=3,label='ITSTGCN')
    
    ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
    ax.tick_params(axis='y', labelsize=20)
    ax.tick_params(axis='x', labelsize=20)

with plt.style.context('seaborn-white'):
    fig, ax = plt.subplots(figsize=(20,10))
    
    ax.plot(evtor.f_tr[:,1],'--o',color='black',alpha=0.5,label='Imputation')
    ax.plot(data1['y'][:],'-',color='grey',label='Complete Data')
    ax.plot(evtor.fhat_tr[:,1],color='brown',lw=3,label='STGCN')
    ax.plot(evtor1.fhat_tr[:,1],color='blue',lw=3,label='ITSTGCN')
    
    ax.legend(fontsize=20,loc='lower left',facecolor='white', frameon=True)
    ax.tick_params(axis='y', labelsize=20)
    ax.tick_params(axis='x', labelsize=20)

hyperparameter

WindmillOutputSmallDatasetLoader()
import itstgcn

data_dict = itstgcn.load_data('./data/fivenodes.pkl')
loader = itstgcn.DatasetLoader(data_dict)

from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader
loader1 = ChickenpoxDatasetLoader()

from torch_geometric_temporal.dataset import PedalMeDatasetLoader
loader2 = PedalMeDatasetLoader()

from torch_geometric_temporal.dataset import WikiMathsDatasetLoader
loader3 = WikiMathsDatasetLoader()

# from torch_geometric_temporal.dataset import WindmillOutputSmallDatasetLoader
# loader6 = WindmillOutputSmallDatasetLoader()

from torch_geometric_temporal.dataset import MontevideoBusDatasetLoader
loader10 = MontevideoBusDatasetLoader()
try:
    from tqdm import tqdm
except ImportError:
    def tqdm(iterable):
        return iterable
Dataset RecurrentGCN Method Missing Rate Filters Lags Mean SD
fivenodes GConvGRU IT-STGCN 0.7 12 2 1.167 0.059
fivenodes GConvGRU STGCN 0.7 12 2 2.077 0.252
chickenpox GConvGRU IT-STGCN 0.8 16 4 1.586 0.199
chickenpox GConvGRU STGCN 0.8 16 4 2.529 0.292
pedalme GConvGRU IT-STGCN 0.6 12 4 1.571 0.277
pedalme GConvGRU STGCN 0.6 12 4 1.753 0.239
wikimath GConvGRU IT-STGCN 0.8 12 8 0.687 0.021
wikimath GConvGRU STGCN 0.8 12 8 0.932 0.04
windmillsmall GConvGRU IT-STGCN 0.7 12 8 1.180 0.035
windmillsmall GConvGRU STGCN 0.7 12 8 1.636 0.088
monte GConvGRU IT-STGCN 0.8 12 4 1.096 0.019
monte GConvGRU STGCN 0.8 12 4 1.516 0.040
EvolveGCNO?
Init signature:
EvolveGCNO(
    in_channels: int,
    improved: bool = False,
    cached: bool = False,
    normalize: bool = True,
    add_self_loops: bool = True,
)
Docstring:     
An implementation of the Evolving Graph Convolutional without Hidden Layer.
For details see this paper: `"EvolveGCN: Evolving Graph Convolutional
Networks for Dynamic Graph." <https://arxiv.org/abs/1902.10191>`_
Args:
    in_channels (int): Number of filters.
    improved (bool, optional): If set to :obj:`True`, the layer computes
        :math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.
        (default: :obj:`False`)
    cached (bool, optional): If set to :obj:`True`, the layer will cache
        the computation of :math:`\mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
        \mathbf{\hat{D}}^{-1/2}` on first execution, and will use the
        cached version for further executions.
        This parameter should only be set to :obj:`True` in transductive
        learning scenarios. (default: :obj:`False`)
    normalize (bool, optional): Whether to add self-loops and apply
        symmetric normalization. (default: :obj:`True`)
    add_self_loops (bool, optional): If set to :obj:`False`, will not add
        self-loops to the input graph. (default: :obj:`True`)
Init docstring: Initializes internal Module state, shared by both nn.Module and ScriptModule.
File:           ~/anaconda3/envs/temp_csy/lib/python3.8/site-packages/torch_geometric_temporal/nn/recurrent/evolvegcno.py
Type:           type
Subclasses:     
import torch
import torch.nn.functional as F
from torch_geometric_temporal.nn.recurrent import EvolveGCNO

# from torch_geometric_temporal.dataset import ChickenpoxDatasetLoader
from torch_geometric_temporal.signal import temporal_signal_split

# loader1 = ChickenpoxDatasetLoader()

dataset = loader.get_dataset(lags=2)
dataset1 = loader1.get_dataset(lags=4)
dataset2 = loader2.get_dataset(lags=4)
dataset3 = loader3.get_dataset(lags=8)
# dataset6 = loader6.get_dataset(lags=8)
dataset10 = loader10.get_dataset(lags=4)

train_dataset, test_dataset = temporal_signal_split(dataset, train_ratio=0.2)
train_dataset1, test_dataset1 = temporal_signal_split(dataset1, train_ratio=0.2)
train_dataset2, test_dataset2 = temporal_signal_split(dataset2, train_ratio=0.2)
train_dataset3, test_dataset3 = temporal_signal_split(dataset3, train_ratio=0.2)
# train_dataset6, test_dataset6 = temporal_signal_split(dataset6, train_ratio=0.2)
train_dataset10, test_dataset10 = temporal_signal_split(dataset10, train_ratio=0.2)
# _a = itstgcn.load_data('./data/Windmillsmall.pkl')
dataset6 = _a.get_dataset(lags=8)
train_dataset6, test_dataset6 = temporal_signal_split(dataset6, train_ratio=0.2)
class RecurrentGCN(torch.nn.Module):
    def __init__(self, node_features):
        super(RecurrentGCN, self).__init__()
        self.recurrent = EvolveGCNO(node_features)
        self.linear = torch.nn.Linear(node_features, 1)

    def forward(self, x, edge_index, edge_weight):
        h = self.recurrent(x, edge_index, edge_weight)
        h = F.relu(h)
        h = self.linear(h)
        return h

fivenodes Nodes = 2, Filters =

model = RecurrentGCN(node_features=2)

optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

model.train()

for epoch in tqdm(range(200)):
    cost = 0
    _b=[]
    _d=[]
    for time, snapshot in enumerate(train_dataset):
        y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
        _b.append(y_hat)
        _d.append(cost)
    cost = cost / (time+1)
    cost.backward(retain_graph=True)
    optimizer.step()
    optimizer.zero_grad()
100%|██████████| 200/200 [00:09<00:00, 20.06it/s]
model.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset):
    if time == 0:
        model.recurrent.weight = None
    y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    _a.append(y_hat)
    _a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
MSE: 1.0642
_c = [_a1[i].detach() for i in range(len(_a1))]

_e = [_d[i].detach() for i in range(len(_d))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))

ax1.set_title('train node1')
ax1.plot([train_dataset.targets[i][0] for i in range(train_dataset.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset.snapshot_count)]))

ax2.set_title('test node1')
ax2.plot([test_dataset.targets[i][0] for i in range(test_dataset.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset.snapshot_count)]))

ax3.set_title('train node2')
ax3.plot([train_dataset.targets[i][1] for i in range(train_dataset.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset.snapshot_count)]))


ax4.set_title('test node2')
ax4.plot([test_dataset.targets[i][1] for i in range(test_dataset.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset.snapshot_count)]))

ax5.set_title('train cost')
ax5.plot(_e)

ax6.set_title('test cost')
ax6.plot(_c)

Chickenpox Nodes = 4, Filters = 12

model1 = RecurrentGCN(node_features=4)

optimizer1 = torch.optim.Adam(model1.parameters(), lr=0.01)

model1.train()

for epoch in tqdm(range(200)):
    cost = 0
    _b=[]
    _d=[]
    for time, snapshot in enumerate(train_dataset1):
        y_hat = model1(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
        _b.append(y_hat)
        _d.append(cost)
    cost = cost / (time+1)
    cost.backward(retain_graph=True)
    optimizer1.step()
    optimizer1.zero_grad()
100%|██████████| 200/200 [00:30<00:00,  6.58it/s]
model1.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset1):
    if time == 0:
        model1.recurrent.weight = None
    y_hat = model1(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    _a.append(y_hat)
    _a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
MSE: 0.9248
_e = [_d[i].detach() for i in range(len(_d))]

_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))

ax1.set_title('train node1')
ax1.plot([train_dataset1.targets[i][0] for i in range(train_dataset1.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset1.snapshot_count)]))

ax2.set_title('test node1')
ax2.plot([test_dataset1.targets[i][0] for i in range(test_dataset1.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset1.snapshot_count)]))

ax3.set_title('train node2')
ax3.plot([train_dataset1.targets[i][1] for i in range(train_dataset1.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset1.snapshot_count)]))


ax4.set_title('test node2')
ax4.plot([test_dataset1.targets[i][1] for i in range(test_dataset1.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset1.snapshot_count)]))

ax5.set_title('train cost')
ax5.plot(_e)

ax6.set_title('test cost')
ax6.plot(_c)

Pedalme Nodes = 4, Filters =

model2 = RecurrentGCN(node_features=4)

optimizer2 = torch.optim.Adam(model2.parameters(), lr=0.01)

model2.train()
    

for epoch in tqdm(range(200)):
    cost = 0
    _b=[]
    _d=[]
    for time, snapshot in enumerate(train_dataset2):
        y_hat = model2(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
        _b.append(y_hat)
        _d.append(cost)
    cost = cost / (time+1)
    cost.backward(retain_graph=True)
    optimizer2.step()
    optimizer2.zero_grad()
100%|██████████| 200/200 [00:01<00:00, 101.86it/s]
model2.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset2):
    if time == 0:
        model2.recurrent.weight = None
    y_hat = model2(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    _a.append(y_hat)
    _a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
MSE: 0.5624
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))

ax1.set_title('train node1')
ax1.plot([train_dataset2.targets[i][0] for i in range(train_dataset2.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset2.snapshot_count)]))

ax2.set_title('test node1')
ax2.plot([test_dataset2.targets[i][0] for i in range(test_dataset2.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset2.snapshot_count)]))

ax3.set_title('train node2')
ax3.plot([train_dataset2.targets[i][1] for i in range(train_dataset2.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset2.snapshot_count)]))

ax4.set_title('test node2')
ax4.plot([test_dataset2.targets[i][1] for i in range(test_dataset2.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset2.snapshot_count)]))

ax5.set_title('train cost')
ax5.plot(_e)

ax6.set_title('test cost')
ax6.plot(_c)

Wikimaths Nodes = 8, Filters =

model3 = RecurrentGCN(node_features=8)

optimizer3 = torch.optim.Adam(model3.parameters(), lr=0.01)

model3.train()

for epoch in tqdm(range(50)):
    cost = 0
    _b=[]
    _d=[]
    for time, snapshot in enumerate(train_dataset3):
        y_hat = model3(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
        _b.append(y_hat)
        _d.append(cost)
    cost = cost / (time+1)
    cost.backward(retain_graph=True)
    optimizer3.step()
    optimizer3.zero_grad()
100%|██████████| 50/50 [02:50<00:00,  3.42s/it]
model3.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset3):
    if time == 0:
        model3.recurrent.weight = None
    y_hat = model3(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    _a.append(y_hat)
    _a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
MSE: 0.6972
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))

ax1.set_title('train node1')
ax1.plot([train_dataset3.targets[i][0] for i in range(train_dataset3.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset3.snapshot_count)]))

ax2.set_title('test node1')
ax2.plot([test_dataset3.targets[i][0] for i in range(test_dataset3.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset3.snapshot_count)]))

ax3.set_title('train node2')
ax3.plot([train_dataset3.targets[i][1] for i in range(train_dataset3.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset3.snapshot_count)]))


ax4.set_title('test node2')
ax4.plot([test_dataset3.targets[i][1] for i in range(test_dataset3.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset3.snapshot_count)]))

ax5.set_title('train cost')
ax5.plot(_e)

ax6.set_title('test cost')
ax6.plot(_c)

Windmillsmall Nodes = 8, Filters =

model6 = RecurrentGCN(node_features=8)

optimizer6 = torch.optim.Adam(model6.parameters(), lr=0.01)

model6.train()

for epoch in tqdm(range(10)):
    cost = 0
    _b=[]
    _d=[]
    for time, snapshot in enumerate(train_dataset6):
        y_hat = model6(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
        _b.append(y_hat)
        _d.append(cost)
    cost = cost / (time+1)
    cost.backward(retain_graph=True)
    optimizer6.step()
    optimizer6.zero_grad()
100%|██████████| 10/10 [00:49<00:00,  4.97s/it]
model6.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset6):
    if time == 0:
        model6.recurrent.weight = None
    y_hat = model6(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    _a.append(y_hat)
    _a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
MSE: 1.0098
_e = [_d[i].detach() for i in range(len(_d))]
_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))

ax1.set_title('train node1')
ax1.plot([train_dataset6.targets[i][0] for i in range(train_dataset6.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset6.snapshot_count)]))

ax2.set_title('test node1')
ax2.plot([test_dataset6.targets[i][0] for i in range(test_dataset6.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset6.snapshot_count)]))

ax3.set_title('train node2')
ax3.plot([train_dataset6.targets[i][1] for i in range(train_dataset6.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[1] for i in range(train_dataset6.snapshot_count)]))


ax4.set_title('test node2')
ax4.plot([test_dataset6.targets[i][1] for i in range(test_dataset6.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[1] for i in range(test_dataset6.snapshot_count)]))

ax5.set_title('train cost')
ax5.plot(_e)

ax6.set_title('test cost')
ax6.plot(_c)

Monte Nodes = 4, Filters =

model10 = RecurrentGCN(node_features=4)

optimizer10 = torch.optim.Adam(model10.parameters(), lr=0.01)

model10.train()

for epoch in tqdm(range(200)):
    cost = 0
    _b=[]
    _d=[]
    for time, snapshot in enumerate(train_dataset10):
        y_hat = model10(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
        cost = cost + torch.mean((y_hat-snapshot.y)**2)
        _b.append(y_hat)
        _d.append(cost)
    cost = cost / (time+1)
    cost.backward(retain_graph=True)
    optimizer10.step()
    optimizer10.zero_grad()
100%|██████████| 200/200 [01:38<00:00,  2.04it/s]
model10.eval()
cost = 0
_a=[]
_a1=[]
for time, snapshot in enumerate(test_dataset10):
    if time == 0:
        model10.recurrent.weight = None
    y_hat = model10(snapshot.x, snapshot.edge_index, snapshot.edge_attr).reshape(-1)
    cost = cost + torch.mean((y_hat-snapshot.y)**2)
    _a.append(y_hat)
    _a1.append(cost)
cost = cost / (time+1)
cost = cost.item()
print("MSE: {:.4f}".format(cost))
MSE: 0.9850
_e = [_d[i].detach() for i in range(len(_d))]

_c = [_a1[i].detach() for i in range(len(_a1))]
fig, (( ax1,ax2),(ax3,ax4),(ax5,ax6)) = plt.subplots(3,2,figsize=(30,20))

ax1.set_title('train node1')
ax1.plot([train_dataset10.targets[i][0] for i in range(train_dataset10.snapshot_count)])
ax1.plot(torch.tensor([_b[i].detach()[0] for i in range(train_dataset10.snapshot_count)]))

ax2.set_title('test node1')
ax2.plot([test_dataset10.targets[i][0] for i in range(test_dataset10.snapshot_count)])
ax2.plot(torch.tensor([_a[i].detach()[0] for i in range(test_dataset10.snapshot_count)]))

ax3.set_title('train node2')
ax3.plot([train_dataset10.targets[i][10] for i in range(train_dataset10.snapshot_count)])
ax3.plot(torch.tensor([_b[i].detach()[10] for i in range(train_dataset10.snapshot_count)]))


ax4.set_title('test node2')
ax4.plot([test_dataset10.targets[i][10] for i in range(test_dataset10.snapshot_count)])
ax4.plot(torch.tensor([_a[i].detach()[10] for i in range(test_dataset10.snapshot_count)]))

ax5.set_title('train cost')
ax5.plot(_e)

ax6.set_title('test cost')
ax6.plot(_c)