SY 1st ITSTGCN

ST-GCN
Author

SEOYEON CHOI

Published

March 3, 2023

edit

import

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import animation

# torch
import torch
import torch.nn.functional as F
import torch_geometric_temporal
from torch_geometric_temporal.nn.recurrent import GConvGRU

# scipy 
from scipy.interpolate import interp1d

# utils
import copy
import time
import pickle
import itertools
from tqdm import tqdm
import warnings

# rpy2
import rpy2
import rpy2.robjects as ro 
from rpy2.robjects.vectors import FloatVector
import rpy2.robjects as robjects
from rpy2.robjects.packages import importr

import rpy2.robjects.numpy2ri as rpyn
class RecurrentGCN(torch.nn.Module):
    def __init__(self, node_features, filters):
        super(RecurrentGCN, self).__init__()
        self.recurrent = GConvGRU(node_features, filters, 2)
        self.linear = torch.nn.Linear(filters, 1)

    def forward(self, x, edge_index, edge_weight):
        h = self.recurrent(x, edge_index, edge_weight)
        h = F.relu(h)
        h = self.linear(h)
        return h

pre-defined

def load_data(fname):
    with open(fname, 'rb') as outfile:
        data_dict = pickle.load(outfile)
    return data_dict
def save_data(data_dict,fname):
    with open(fname,'wb') as outfile:
        pickle.dump(data_dict,outfile)
def plot(f,*args,t=None,h=2.5,**kwargs):
    T,N = f.shape
    if t is None: t = range(T)
    fig = plt.figure()
    ax = fig.subplots(N,1)
    for n in range(N):
        ax[n].plot(t,f[:,n],*args,**kwargs)
        ax[n].set_title('node='+str(n))
    fig.set_figheight(N*h)
    fig.tight_layout()
    plt.close()
    return fig
def plot_add(fig,f,*args,t=None,**kwargs):
    T = f.shape[0]
    N = f.shape[1] 
    if t is None: t = range(T)   
    ax = fig.get_axes()
    for n in range(N):
        ax[n].plot(t,f[:,n],*args,**kwargs)
    return fig
def make_Psi(T):
    W = np.zeros((T,T))
    for i in range(T):
        for j in range(T):
            if i==j :
                W[i,j] = 0
            elif np.abs(i-j) <= 1 : 
                W[i,j] = 1
    d = np.array(W.sum(axis=1))
    D = np.diag(d)
    L = np.array(np.diag(1/np.sqrt(d)) @ (D-W) @ np.diag(1/np.sqrt(d)))
    lamb, Psi = np.linalg.eigh(L)
    return Psi
ebayesthresh = importr('EbayesThresh').ebayesthresh
def trim(f):
    f = np.array(f)
    if len(f.shape)==1: f = f.reshape(-1,1)
    T,N = f.shape
    Psi = make_Psi(T)
    fbar = Psi.T @ f # apply dft 
    fbar_threshed = np.stack([ebayesthresh(FloatVector(fbar[:,i])) for i in range(N)],axis=1)
    fhat = Psi @ fbar_threshed # inverse dft 
    return fhat
def update_from_freq_domain(signal, missing_index):
    signal = np.array(signal)
    T,N = signal.shape 
    signal_trimed = trim(signal)
    for i in range(N):
        try: 
            signal[missing_index[i],i] = signal_trimed[missing_index[i],i]
        except: 
            pass 
    return signal
class DatasetLoader(object):
    def __init__(self,data_dict):
        self._dataset = data_dict 

    def _get_edges(self):
        self._edges = np.array(self._dataset["edges"]).T

    def _get_edge_weights(self):
        self._edge_weights = np.ones(self._edges.shape[1])

    def _get_targets_and_features(self):
        stacked_target = np.array(self._dataset["FX"])
        self.features = [
            stacked_target[i : i + self.lags, :].T
            for i in range(stacked_target.shape[0] - self.lags)
        ]
        self.targets = [
            stacked_target[i + self.lags, :].T
            for i in range(stacked_target.shape[0] - self.lags)
        ]

    def get_dataset(self, lags: int = 4) -> torch_geometric_temporal.signal.StaticGraphTemporalSignal:
        """Returning the Chickenpox Hungary data iterator.

        Args types:
            * **lags** *(int)* - The number of time lags.
        Return types:
            * **dataset** *(torch_geometric_temporal.signal.StaticGraphTemporalSignal)* - The Chickenpox Hungary dataset.
        """
        self.lags = lags
        self._get_edges()
        self._get_edge_weights()
        self._get_targets_and_features()
        dataset = torch_geometric_temporal.signal.StaticGraphTemporalSignal(
            self._edges, self._edge_weights, self.features, self.targets
        )
        return dataset
def _convert_train_dataset(train_dataset):
    lags = torch.tensor(train_dataset.features).shape[-1]
    f = torch.concat([train_dataset[0].x.T,torch.tensor(train_dataset.targets)],axis=0).numpy()
    return f,lags 
def rand_mindex(train_dataset,mrate = 0.5):
    f,lags = _convert_train_dataset(train_dataset)
    T,N = f.shape
    missing_count = int(np.round(mrate*T,0))
    mindex = [np.sort(np.random.choice(range(T),missing_count,replace=False)).tolist() for i in range(N)]  
    return mindex
def miss(train_dataset,mindex,mtype):
    f,lags = _convert_train_dataset(train_dataset)
    T,N = f.shape
    for i,m in enumerate(mindex): 
        f[m,i] = np.nan
    data_dict = {
        'edges':train_dataset.edge_index.T.tolist(), 
        'node_ids':{'node'+str(i):i for i in range(N)}, 
        'FX':f.tolist()
    }
    train_dataset = DatasetLoader(data_dict).get_dataset(lags=lags)
    train_dataset.mindex = mindex
    train_dataset.mrate_eachnode = [len(mx)/T for mx in mindex]
    train_dataset.mrate_total= float(np.sum([len(mx) for mx in train_dataset.mindex])/(N*T))
    train_dataset.mtype= mtype
    return train_dataset
# def miss_rand(train_dataset,missing_ratio=0.5):
#     f,lags = _convert_train_dataset(train_dataset)
#     T,N = f.shape
#     missing_count = int(np.round(missing_ratio*T,0))
#     mindex = [np.sort(np.random.choice(range(T),missing_count,replace=False)).tolist() for i in range(N)]  
#     for i,m in enumerate(mindex): 
#         f[m,i] = np.nan
#     data_dict = {
#         'edges':train_dataset.edge_index.T.tolist(), 
#         'node_ids':{'node'+str(i):i for i in range(N)}, 
#         'FX':f.tolist()
#     }
#     train_dataset = DatasetLoader(data_dict).get_dataset(lags=lags)
#     train_dataset.mindex = mindex
#     train_dataset.mrate_eachnode = [len(mx)/T for mx in mindex]
#     train_dataset.mrate_total= float(np.sum([len(mx) for mx in train_dataset.mindex])/(N*T))
#     train_dataset.mtype= 'rand'
#     return  train_dataset
def padding(train_dataset_miss,*args,interpolation_method='linear',**kwargs):
    mindex = train_dataset_miss.mindex 
    f,lags = _convert_train_dataset(train_dataset_miss)
    T,N = f.shape
    FX = pd.DataFrame(f).interpolate(method=interpolation_method,axis=0,*args,**kwargs).fillna(method='bfill').fillna(method='ffill').to_numpy().tolist()
    data_dict = {
        'edges':train_dataset_miss.edge_index.T.tolist(), 
        'node_ids':{'node'+str(i):i for i in range(N)}, 
        'FX':FX
    }
    train_dataset_padded = DatasetLoader(data_dict).get_dataset(lags=lags)
    train_dataset_padded.mindex = mindex
    train_dataset_padded.mrate_eachnode = train_dataset_miss.mrate_eachnode
    train_dataset_padded.mrate_total = train_dataset_miss.mrate_total
    train_dataset_padded.mtype= train_dataset_miss.mtype
    train_dataset_padded.interpolation_method = interpolation_method
    return train_dataset_padded
class StgcnLearner:
    def __init__(self,train_dataset,dataset_name = None):
        self.train_dataset = train_dataset
        self.lags = torch.tensor(train_dataset.features).shape[-1]
        self.dataset_name = str(train_dataset) if dataset_name is None else dataset_name
        self.mindex= getattr(self.train_dataset,'mindex',None)
        self.mrate_eachnode = getattr(self.train_dataset,'mrate_eachnode',0)
        self.mrate_total = getattr(self.train_dataset,'mrate_total',0)
        self.mtype = getattr(self.train_dataset,'mtype',None)
        self.interpolation_method = getattr(self.train_dataset,'interpolation_method',None)
        self.method = 'STGCN'
    def learn(self,filters=32,epoch=50):
        self.model = RecurrentGCN(node_features=self.lags, filters=filters)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01)
        self.model.train()
        for e in range(epoch):
            for t, snapshot in enumerate(self.train_dataset):
                yt_hat = self.model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)
                cost = torch.mean((yt_hat-snapshot.y)**2)
                cost.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()
            print('{}/{}'.format(e+1,epoch),end='\r')
        # recording HP
        self.nof_filters = filters
        self.epochs = epoch+1
    def __call__(self,dataset):
        X = torch.tensor(dataset.features).float()
        y = torch.tensor(dataset.targets).float()
        yhat = torch.stack([self.model(snapshot.x, snapshot.edge_index, snapshot.edge_attr) for snapshot in dataset]).detach().squeeze().float()
        return {'X':X, 'y':y, 'yhat':yhat} 
class Evaluator:
    def __init__(self,learner,train_dataset,test_dataset):
        self.learner = learner
        # self.learner.model.eval()
        try:self.learner.model.eval()
        except:pass
        self.train_dataset = train_dataset
        self.test_dataset = test_dataset
        self.lags = self.learner.lags
        rslt_tr = self.learner(self.train_dataset) 
        rslt_test = self.learner(self.test_dataset)
        self.X_tr = rslt_tr['X']
        self.y_tr = rslt_tr['y']
        self.f_tr = torch.concat([self.train_dataset[0].x.T,self.y_tr],axis=0).float()
        self.yhat_tr = rslt_tr['yhat']
        self.fhat_tr = torch.concat([self.train_dataset[0].x.T,self.yhat_tr],axis=0).float()
        self.X_test = rslt_test['X']
        self.y_test = rslt_test['y']
        self.f_test = self.y_test 
        self.yhat_test = rslt_test['yhat']
        self.fhat_test = self.yhat_test
        self.f = torch.concat([self.f_tr,self.f_test],axis=0)
        self.fhat = torch.concat([self.fhat_tr,self.fhat_test],axis=0)
    def calculate_mse(self):
        test_base_mse_eachnode = ((self.y_test - self.y_test.mean(axis=0).reshape(-1,self.y_test.shape[-1]))**2).mean(axis=0).tolist()
        test_base_mse_total = ((self.y_test - self.y_test.mean(axis=0).reshape(-1,self.y_test.shape[-1]))**2).mean().item()
        train_mse_eachnode = ((self.y_tr-self.yhat_tr)**2).mean(axis=0).tolist()
        train_mse_total = ((self.y_tr-self.yhat_tr)**2).mean().item()
        test_mse_eachnode = ((self.y_test-self.yhat_test)**2).mean(axis=0).tolist()
        test_mse_total = ((self.y_test-self.yhat_test)**2).mean().item()
        self.mse = {'train': {'each_node': train_mse_eachnode, 'total': train_mse_total},
                    'test': {'each_node': test_mse_eachnode, 'total': test_mse_total},
                    'test(base)': {'each_node': test_base_mse_eachnode, 'total': test_base_mse_total},
                   }
    def _plot(self,*args,t=None,h=2.5,max_node=5,**kwargs):
        T,N = self.f.shape
        if t is None: t = range(T)
        fig = plt.figure()
        nof_axs = max(min(N,max_node),2)
        if min(N,max_node)<2: 
            print('max_node should be >=2')
        ax = fig.subplots(nof_axs ,1)
        for n in range(nof_axs):
            ax[n].plot(t,self.f[:,n],color='gray',*args,**kwargs)
            ax[n].set_title('node='+str(n))
        fig.set_figheight(nof_axs*h)
        fig.tight_layout()
        plt.close()
        return fig
    def plot(self,*args,t=None,h=2.5,**kwargs):
        self.calculate_mse()
        fig = self._plot(*args,t=None,h=2.5,**kwargs)
        ax = fig.get_axes()
        for i,a in enumerate(ax):
            _mse1= self.mse['train']['each_node'][i]
            _mse2= self.mse['test']['each_node'][i]
            _mse3= self.mse['test(base)']['each_node'][i]
            _mrate = lrnr.mrate_eachnode if set(dir(lrnr.mrate_eachnode)) & {'__getitem__'} == set() else lrnr.mrate_eachnode[i]
            _title = 'node{0}, mrate: {1:.2f}% \n mse(train) = {2:.2f}, mse(test) = {3:.2f}, mse(test_base) = {4:.2f}'.format(i,_mrate*100,_mse1,_mse2,_mse3)
            a.set_title(_title)
            _t1 = self.lags
            _t2 = self.yhat_tr.shape[0]+self.lags
            _t3 = len(self.f)
            a.plot(range(_t1,_t2),self.yhat_tr[:,i],label='fitted (train)',color='C0')
            a.plot(range(_t2,_t3),self.yhat_test[:,i],label='fitted (test)',color='C1')
            a.legend()
        _mse1= self.mse['train']['total']
        _mse2= self.mse['test']['total']
        _mse3= self.mse['test(base)']['total']
        _title =\
        'dataset: {0} \n method: {1} \n mrate: {2:.2f}% \n interpolation:{3} \n epochs={4} \n number of filters={5} \n lags = {6} \n mse(train) = {7:.2f}, mse(test) = {8:.2f}, mse(test_base) = {9:.2f} \n'.\
        format(lrnr.dataset_name,lrnr.method,lrnr.mrate_total*100,lrnr.interpolation_method,lrnr.epochs,lrnr.nof_filters,lrnr.lags,_mse1,_mse2,_mse3)
        fig.suptitle(_title)
        fig.tight_layout()
        return fig
class Evaluator:
    def __init__(self,learner,train_dataset,test_dataset):
        self.learner = learner
        self.learner.model.eval()
        self.train_dataset = train_dataset
        self.test_dataset = test_dataset
        self.lags = lrnr.lags
        rslt_tr = self.learner(self.train_dataset) 
        rslt_test = self.learner(self.test_dataset)
        self.X_tr = rslt_tr['X']
        self.y_tr = rslt_tr['y']
        self.f_tr = torch.concat([self.train_dataset[0].x.T,self.y_tr],axis=0).float()
        self.yhat_tr = rslt_tr['yhat']
        self.fhat_tr = torch.concat([self.train_dataset[0].x.T,self.yhat_tr],axis=0).float()
        self.X_test = rslt_test['X']
        self.y_test = rslt_test['y']
        self.f_test = self.y_test 
        self.yhat_test = rslt_test['yhat']
        self.fhat_test = self.yhat_test
        self.f = torch.concat([self.f_tr,self.f_test],axis=0)
        self.fhat = torch.concat([self.fhat_tr,self.fhat_test],axis=0)
    def calculate_mse(self):
        test_base_mse_eachnode = ((self.y_test - self.y_test.mean(axis=0).reshape(-1,self.y_test.shape[-1]))**2).mean(axis=0).tolist()
        test_base_mse_total = ((self.y_test - self.y_test.mean(axis=0).reshape(-1,self.y_test.shape[-1]))**2).mean().item()
        train_mse_eachnode = ((self.y_tr-self.yhat_tr)**2).mean(axis=0).tolist()
        train_mse_total = ((self.y_tr-self.yhat_tr)**2).mean().item()
        test_mse_eachnode = ((self.y_test-self.yhat_test)**2).mean(axis=0).tolist()
        test_mse_total = ((self.y_test-self.yhat_test)**2).mean().item()
        self.mse = {'train': {'each_node': train_mse_eachnode, 'total': train_mse_total},
                    'test': {'each_node': test_mse_eachnode, 'total': test_mse_total},
                    'test(base)': {'each_node': test_base_mse_eachnode, 'total': test_base_mse_total},
                   }
    def _plot(self,*args,t=None,h=2.5,max_node=5,**kwargs):
        T,N = self.f.shape
        if t is None: t = range(T)
        fig = plt.figure()
        nof_axs = max(min(N,max_node),2)
        if min(N,max_node)<2: 
            print('max_node should be >=2')
        ax = fig.subplots(nof_axs ,1)
        for n in range(nof_axs):
            ax[n].plot(t,self.f[:,n],color='gray',*args,**kwargs)
            ax[n].set_title('node='+str(n))
        fig.set_figheight(nof_axs*h)
        fig.tight_layout()
        plt.close()
        return fig
    def plot(self,*args,t=None,h=2.5,**kwargs):
        self.calculate_mse()
        fig = self._plot(*args,t=None,h=2.5,**kwargs)
        ax = fig.get_axes()
        for i,a in enumerate(ax):
            _mse1= self.mse['train']['each_node'][i]
            _mse2= self.mse['test']['each_node'][i]
            _mse3= self.mse['test(base)']['each_node'][i]
            _mrate = lrnr.mrate_eachnode if set(dir(lrnr.mrate_eachnode)) & {'__getitem__'} == set() else lrnr.mrate_eachnode[i]
            _title = 'node{0}, mrate: {1:.2f}% \n mse(train) = {2:.2f}, mse(test) = {3:.2f}, mse(test_base) = {4:.2f}'.format(i,_mrate*100,_mse1,_mse2,_mse3)
            a.set_title(_title)
            _t1 = self.lags
            _t2 = self.yhat_tr.shape[0]+self.lags
            _t3 = len(self.f)
            a.plot(range(_t1,_t2),self.yhat_tr[:,i],label='fitted (train)',color='C0')
            a.plot(range(_t2,_t3),self.yhat_test[:,i],label='fitted (test)',color='C1')
            a.legend()
        _mse1= self.mse['train']['total']
        _mse2= self.mse['test']['total']
        _mse3= self.mse['test(base)']['total']
        _title =\
        'dataset: {0} \n method: {1} \n mrate: {2:.2f}% \n interpolation:{3} \n epochs={4} \n number of filters={5} \n lags = {6} \n mse(train) = {7:.2f}, mse(test) = {8:.2f}, mse(test_base) = {9:.2f} \n'.\
        format(lrnr.dataset_name,lrnr.method,lrnr.mrate_total*100,lrnr.interpolation_method,lrnr.epochs,lrnr.nof_filters,lrnr.lags,_mse1,_mse2,_mse3)
        fig.suptitle(_title)
        fig.tight_layout()
        return fig
class ITStgcnLearner(StgcnLearner):
    def __init__(self,train_dataset,dataset_name = None):
        super().__init__(train_dataset)
        self.method = 'IT-STGCN'
    def learn(self,filters=32,epoch=50):
        self.model = RecurrentGCN(node_features=self.lags, filters=filters)
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01)
        self.model.train()
        train_dataset_temp = copy.copy(self.train_dataset)
        for e in range(epoch):
            f,lags = _convert_train_dataset(train_dataset_temp)
            f = update_from_freq_domain(f,self.mindex)
            T,N = f.shape 
            data_dict_temp = {
                'edges':self.train_dataset.edge_index.T.tolist(), 
                'node_ids':{'node'+str(i):i for i in range(N)}, 
                'FX':f
            }
            train_dataset_temp = DatasetLoader(data_dict_temp).get_dataset(lags=self.lags)  
            for t, snapshot in enumerate(train_dataset_temp):
                yt_hat = self.model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)
                cost = torch.mean((yt_hat-snapshot.y)**2)
                cost.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()
            print('{}/{}'.format(e+1,epoch),end='\r')
        # record
        self.nof_filters = filters
        self.epochs = epoch+1_simulate_STGCN
class GNARLearner(StgcnLearner):
    def __init__(self,train_dataset,dataset_name = None):
        super().__init__(train_dataset)
        self.method = 'GNAR'
    def learn(self):
    
        self.N = np.array(train_dataset.features).shape[1]
        w=np.zeros((self.N,self.N))
        for k in range(len(train_dataset.edge_index[0])):
            w[train_dataset.edge_index[0][k],train_dataset.edge_index[1][k]] = 1

        self.m = robjects.r.matrix(FloatVector(w), nrow = self.N, ncol = self.N)
        _vts = robjects.r.matrix(
            rpyn.numpy2rpy(np.array(train_dataset.features).reshape(-1,1).squeeze()), 
            nrow = np.array(train_dataset.targets).shape[0] + self.lags, 
            ncol = self.N
        )
        self.fit = GNAR.GNARfit(vts=_vts,net = GNAR.matrixtoGNAR(self.m), alphaOrder = self.lags, betaOrder = FloatVector([1]*self.lags))
        
        self.nof_filters = None
        self.epochs = None
    def __call__(self,dataset,mode='fit',n_ahead=1):
        r_code = '''
        substitute<-function(lrnr_fit1,lrnr_fit2){
        lrnr_fit1$mod$coef = lrnr_fit2$mod$coef
        return(lrnr_fit1)
        }
        '''
        ro.r(r_code)
        substitute=ro.globalenv['substitute']
        _vts = robjects.r.matrix(
            rpyn.numpy2rpy(np.array(dataset.features).reshape(-1,1).squeeze()), 
            nrow = np.array(dataset.targets).shape[0] + self.lags, 
            ncol = self.N
        )
        self._fit = GNAR.GNARfit(vts = _vts, net = GNAR.matrixtoGNAR(self.m), alphaOrder = self.lags, betaOrder = FloatVector([1]*self.lags))
        self._fit = substitute(self._fit,self.fit)
        
        X = torch.tensor(dataset.features).float()
        y = torch.tensor(dataset.targets).float()
        if mode == 'fit':
            X = np.array(dataset.features)
            yhat = GNAR.fitted_GNARfit(self._fit,ro.FloatVector(X))
            X = torch.tensor(X).float()
            yhat = torch.tensor(np.array(yhat)).float()
        elif mode == 'fore': 
            yhat = GNAR.predict_GNARfit(self.fit,n_ahead=n_ahead)
            yhat = torch.tensor(np.array(yhat)).float()
        else: 
            print('mode should be "fit" or "fore"')
        return {'X':X, 'y':y, 'yhat':yhat} 
# class SimulationPlanner:
#     def __init__(self,plans,loader,dataset_name=None,simulation_results=None):
#         self.plans = plans
#         col = ['dataset', 'method', 'mrate', 'mtype', 'lags', 'nof_filters', 'inter_method', 'epoch', 'mse']
#         self.product_iterator = itertools.product(
#             plans['method'], 
#             plans['mrate'],
#             plans['mtype'],
#             plans['lags'],
#             plans['nof_filters'],
#             plans['inter_method'],
#             plans['epoch']
#         )
#         self.loader = loader
#         self.dataset_name = dataset_name
#         self.simulation_results = pd.DataFrame(columns=col) if simulation_results is None else simulation_results 
#     def _simulate_STGCN(self):
#         for prod_itor in self.product_iterator:
#             method,mrate,mtype,lags,nof_filters,inter_method,epoch = prod_itor 
#             self.dataset = self.loader.get_dataset(lags=lags)
#             train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(self.dataset, train_ratio=0.8)
#             if mrate >0: 
#                 if mtype == 'rand':
#                     train_dataset = padding(miss_rand(train_dataset,missing_ratio=mrate),interpolation_method=inter_method)
#                 elif mtype == 'block':
#                     pass 
#             lrnr = StgcnLearner(train_dataset,dataset_name=self.dataset_name)
#             lrnr.learn(filters=nof_filters,epoch=epoch)
#             evtor = Evaluator(lrnr,train_dataset,test_dataset)
#             evtor.calculate_mse()
#             mse = evtor.mse['test']['total']
#             self._record(*prod_itor,mse)
#     def _record(self,method,mrate,mtype,lag,nof_filter,inter_method,epoch,mse):
#         dct = {'dataset': self.dataset_name,
#                'method': method,
#                'mrate': mrate,
#                'mtype': mtype, 
#                'lags': lag,
#                'nof_filters': nof_filter,
#                'inter_method': inter_method,
#                'epoch': epoch,
#                'mse': mse
#               }
#         simulation_result_new = pd.Series(dct).to_frame().transpose()
#         self.simulation_results = pd.concat([self.simulation_results,simulation_result_new])

From R

%load_ext rpy2.ipython
%%R
library(GNAR)
library(igraph)
library(zoo)
R[write to console]: Loading required package: igraph

R[write to console]: 
Attaching package: ‘igraph’


R[write to console]: The following objects are masked from ‘package:stats’:

    decompose, spectrum


R[write to console]: The following object is masked from ‘package:base’:

    union


R[write to console]: Loading required package: wordcloud

R[write to console]: Loading required package: RColorBrewer

R[write to console]: 
Attaching package: ‘zoo’


R[write to console]: The following objects are masked from ‘package:base’:

    as.Date, as.Date.numeric

%%R
fiveNet_m <- as.matrix(fiveNet)
%R -o fiveNet_m
GNAR = importr('GNAR') # import GNAR 
igraph = importr('igraph') # import igraph 

예제1: vanilla STGCN

- 데이터

_data = load_data('./data/fivenodes.pkl')
_edges = torch.tensor(_data['edges']).nonzero().tolist()
_FX = _data['f'].tolist()
_node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 
data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)

- 학습

lrnr = StgcnLearner(train_dataset,dataset_name='five_nodes')
/tmp/ipykernel_3989960/3087935251.py:4: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at  /opt/conda/conda-bld/pytorch_1639180588308/work/torch/csrc/utils/tensor_new.cpp:201.)
  self.lags = torch.tensor(train_dataset.features).shape[-1]
lrnr.learn(filters=4,epoch=5)
5/5

- 적합값

# lrnr(train_dataset) 
# lrnr(test_dataset)
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화


baseline

torch.tensor(test_dataset.targets).shape
torch.Size([40, 5])
((torch.tensor(test_dataset.targets)- torch.tensor(test_dataset.targets).mean(axis=0).reshape(-1,5))**2).mean()
tensor(1.2525, dtype=torch.float64)

test MSE는 1.2525 보다는 무조건 낮아야함!! 아니라면 모형을 잘못 돌린거


evtor = Evaluator(lrnr,train_dataset,test_dataset)
fig = evtor.plot('--.',h=5,max_node=3,label='complete data',alpha=0.5) 
fig.set_figwidth(12)
fig.tight_layout()
fig

예제2: padding missing values

- 데이터

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)

- 임의로 결측치 발생

mindex = rand_mindex(train_dataset,mrate=0.5)
train_dataset_miss = miss(train_dataset,mindex=mindex,mtype='rand')
fig = plot(torch.tensor(train_dataset_miss.targets),'o')
fig 

- 적절한 method로 결측치를 채움 (default 는 linear)

train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)
fig = plot(torch.tensor(train_dataset_miss.targets),'o')
plot_add(fig,torch.tensor(train_dataset_padded.targets),'--x',color='C1',alpha=0.5)

다른 method로 결측치를 채울수도 있음. 사용할 수 있는 방법들은 아래에 정리되어 있음

train_dataset_padded2 = padding(train_dataset_miss,interpolation_method='nearest')
fig = plot(torch.tensor(train_dataset_miss.targets),'o')
plot_add(fig,torch.tensor(train_dataset_padded2.targets),'--x',color='C1',alpha=0.5)

train_dataset_padded3 = padding(train_dataset_miss,interpolation_method='quadratic')
fig = plot(torch.tensor(train_dataset_miss.targets),'o')
plot_add(fig,torch.tensor(train_dataset_padded3.targets),'--x',color='C1',alpha=0.5)

train_dataset_padded4 = padding(train_dataset_miss,interpolation_method='cubic')
fig = plot(torch.tensor(train_dataset_miss.targets),'o')
plot_add(fig,torch.tensor(train_dataset_padded4.targets),'--x',color='C1',alpha=0.5)

- 블락으로 결측치 발생

train_dataset_miss = miss(train_dataset,mindex=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
fig = plot(torch.tensor(train_dataset_miss.targets),'o')
fig 

예제3-1: vanilla STGCN with random missing

- data

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)
train_dataset_miss = miss(train_dataset,mindex=rand_mindex(train_dataset,mrate=0.5),mtype='rand')
train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)

- 학습

lrnr = StgcnLearner(train_dataset_padded)
lrnr.learn(filters=4,epoch=50)
50/50

- 적합값

#lrnr(train_dataset_padded) 
#lrnr(test_dataset)
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화

evtor = Evaluator(lrnr,train_dataset_padded,test_dataset)
fig = evtor.plot('--.',h=5,max_node=5,label='complete data',alpha=0.5) # max_nodes 는 1보다 커야함
fig.set_figwidth(12)
fig.tight_layout()
fig

예제3-2: vanilla STGCN with block missing

- data

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)
train_dataset_miss = miss(train_dataset,mindex=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)

- 학습

lrnr = StgcnLearner(train_dataset_padded)
lrnr.learn(filters=4,epoch=50)
50/50

- 적합값

#lrnr(train_dataset_padded) 
#lrnr(test_dataset)
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화

evtor = Evaluator(lrnr,train_dataset_padded,test_dataset)
fig = evtor.plot('--.',h=5,max_node=5,label='complete data',alpha=0.5) # max_nodes 는 1보다 커야함
fig.set_figwidth(12)
fig.tight_layout()
fig

예제4-1: threshold example (random)

- data

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)

- 결측치 발생 및 패딩

train_dataset_miss = miss(train_dataset,mindex=rand_mindex(train_dataset,mrate=0.5),mtype='rand')
train_dataset_padded = padding(train_dataset_miss)
f_miss,_ = _convert_train_dataset(train_dataset_miss)
f_padded,_ = _convert_train_dataset(train_dataset_padded)
fig = plot(f_miss,'o')
plot_add(fig,f_padded,'--x',alpha=0.5)

- update by frequency thresholding

fig = plot(f_miss,'o',alpha=0.5)
plot_add(fig,f_padded,'--x',alpha=0.5)
f_updated = update_from_freq_domain(f_padded,train_dataset_padded.mindex)
plot_add(fig,f_updated,'-')

예제4-2: threshold example (block)

- data

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)

- 결측치 발생 및 패딩

train_dataset_miss = miss(train_dataset,mindex=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
train_dataset_padded = padding(train_dataset_miss)
f_miss,_ = _convert_train_dataset(train_dataset_miss)
f_padded,_ = _convert_train_dataset(train_dataset_padded)
fig = plot(f_miss,'o')
plot_add(fig,f_padded,'--x',alpha=0.5)

- update by frequency thresholding

fig = plot(f_miss,'o',alpha=0.5)
plot_add(fig,f_padded,'--x',alpha=0.5)
f_updated = update_from_freq_domain(f_padded,train_dataset_padded.mindex)
plot_add(fig,f_updated,'-')

예제5-1: iterative thresholded STGCN (IT-STGCN) with random missing

- data

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)
train_dataset_miss = miss(train_dataset,mindex=rand_mindex(train_dataset,mrate=0.5),mtype='rand')
# train_dataset_miss = miss(train_dataset,rm=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)

- 학습

lrnr = ITStgcnLearner(train_dataset_padded)
lrnr.learn(filters=4,epoch=50)
50/50

- 적합값

#lrnr(train_dataset_padded) 
#lrnr(test_dataset)['yhat'].shape
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화

evtor = Evaluator(lrnr,train_dataset_padded,test_dataset)
fig = evtor.plot('--.',h=5,max_node=3,label='complete data',alpha=0.5) # max_nodes 는 1보다 커야함
fig.set_figwidth(12)
fig.tight_layout()
fig

예제5-2: iterative thresholded STGCN (IT-STGCN) with block missing

- data

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)
# train_dataset_miss = miss(train_dataset,rm=0.5,mtype='rand')
train_dataset_miss = miss(train_dataset,mindex=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)

- 학습

lrnr = ITStgcnLearner(train_dataset_padded)
lrnr.learn(filters=4,epoch=50)
50/50

- 적합값

#lrnr(train_dataset_padded) 
#lrnr(test_dataset)['yhat'].shape
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화

evtor = Evaluator(lrnr,train_dataset_padded,test_dataset)
fig = evtor.plot('--.',h=5,max_node=3,label='complete data',alpha=0.5) # max_nodes 는 1보다 커야함
fig.set_figwidth(12)
fig.tight_layout()
fig

예제6-1: GNAR (random missing)

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)
train_dataset_miss = miss(train_dataset,mindex=rand_mindex(train_dataset,mrate=0.5),mtype='rand')
# train_dataset_miss = miss(train_dataset,rm=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)

- 학습

lrnr = GNARLearner(train_dataset_padded)
lrnr.learn()
WARNING: diagonal entries present in original matrix, these will be removed

- 적합값

#lrnr(train_dataset_padded) 
#lrnr(test_dataset)
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화

evtor = Evaluator(lrnr,train_dataset_padded,test_dataset)
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
fig = evtor.plot('--.',h=5,max_node=3,label='complete data',alpha=0.5) # max_nodes 는 1보다 커야함
fig.set_figwidth(12)
fig.tight_layout()
fig

예제6-2: GNAR (block missing)

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
loader = DatasetLoader(data_dict)
dataset = loader.get_dataset(lags=2)
train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(dataset, train_ratio=0.8)
# train_dataset_miss = miss(train_dataset,rm=0.5,mtype='rand')
train_dataset_miss = miss(train_dataset,mindex=[list(range(10,100)),[],list(range(50,80)),[],[]],mtype='block')
train_dataset_padded = padding(train_dataset_miss) # padding(train_dataset_miss,method='linear'와 같음)

- 학습

lrnr = GNARLearner(train_dataset_padded)
lrnr.learn()
WARNING: diagonal entries present in original matrix, these will be removed

- 적합값

#lrnr(train_dataset_padded) 
#lrnr(test_dataset)
  • 실행하면 X,y,yhat 출력

- 모형 평가 및 시각화

evtor = Evaluator(lrnr,train_dataset_padded,test_dataset)
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
fig = evtor.plot('--.',h=5,max_node=3,label='complete data',alpha=0.5) # max_nodes 는 1보다 커야함
fig.set_figwidth(12)
fig.tight_layout()
fig

예제7: SimulationPlanner

PLNR_STGCN_RAND

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
plans_stgcn_rand = {
    'max_iteration': 3, 
    'method': ['STGCN', 'IT-STGCN'], 
    'mrate': [0.0, 0.2, 0.4],
    'lags': [2, 4], 
    'nof_filters': [8,16], 
    'inter_method': ['nearest','linear'],
    'epoch': [1]
}
class PLNR_STGCN_RAND:
    def __init__(self,plans,loader,dataset_name=None,simulation_results=None):
        self.plans = plans
        col = ['dataset', 'method', 'mrate', 'mtype', 'lags', 'nof_filters', 'inter_method', 'epoch', 'mse']
        self.loader = loader
        self.dataset_name = dataset_name
        self.simulation_results = pd.DataFrame(columns=col) if simulation_results is None else simulation_results 
    def simulate(self):
        for _ in range(self.plans['max_iteration']):  
            product_iterator = itertools.product(
                self.plans['method'], 
                self.plans['mrate'], 
                self.plans['lags'], 
                self.plans['nof_filters'], 
                self.plans['inter_method'],
                self.plans['epoch']
            )
            for prod_iter in product_iterator:
                method,mrate,lags,nof_filters,inter_method,epoch = prod_iter
                self.dataset = self.loader.get_dataset(lags=lags)
                train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(self.dataset, train_ratio=0.8)
                if mrate > 0: 
                    mtype = 'rand'
                    mindex = rand_mindex(train_dataset,mrate=mrate)
                    train_dataset = padding(train_dataset_miss = miss(train_dataset,mindex=mindex,mtype=mtype),interpolation_method=inter_method)
                elif mrate ==0: 
                    mtype = None
                    inter_method = None 
                if method == 'STGCN':
                    lrnr = StgcnLearner(train_dataset,dataset_name=self.dataset_name)
                elif method == 'IT-STGCN':
                    lrnr = ITStgcnLearner(train_dataset,dataset_name=self.dataset_name)
                lrnr.learn(filters=nof_filters,epoch=epoch)
                evtor = Evaluator(lrnr,train_dataset,test_dataset)
                evtor.calculate_mse()
                mse = evtor.mse['test']['total']
                self._record(method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse)
            print('{}/{} is done'.format(_+1,self.plans['max_iteration']))
    def _record(self,method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse):
        dct = {'dataset': self.dataset_name,
               'method': method,
               'mrate': mrate,
               'mtype': mtype, 
               'lags': lags,
               'nof_filters': nof_filters,
               'inter_method': inter_method,
               'epoch': epoch,
               'mse': mse
              }
        simulation_result_new = pd.Series(dct).to_frame().transpose()
        self.simulation_results = pd.concat([self.simulation_results,simulation_result_new]).reset_index(drop=True)
plnr = PLNR_STGCN_RAND(plans,loader,dataset_name='five_nodes')
plnr.simulate()
1/3 is done
2/3 is done
3/3 is done
df = plnr.simulation_results
df
dataset method mrate mtype lags nof_filters inter_method epoch mse
0 five_nodes STGCN 0.0 None 2 8 None 1 1.202111
1 five_nodes STGCN 0.0 None 2 8 None 1 1.173311
2 five_nodes STGCN 0.0 None 2 16 None 1 1.170123
3 five_nodes STGCN 0.0 None 2 16 None 1 1.18629
4 five_nodes STGCN 0.0 None 4 8 None 1 1.238957
... ... ... ... ... ... ... ... ... ...
139 five_nodes IT-STGCN 0.4 rand 2 16 linear 1 1.195191
140 five_nodes IT-STGCN 0.4 rand 4 8 nearest 1 1.208371
141 five_nodes IT-STGCN 0.4 rand 4 8 linear 1 1.160624
142 five_nodes IT-STGCN 0.4 rand 4 16 nearest 1 1.15774
143 five_nodes IT-STGCN 0.4 rand 4 16 linear 1 1.217873

144 rows × 9 columns

PLNR_STGCN_BLOCK

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
mindex_block = [list(range(10,100)),[],list(range(50,80)),[],[]]
plans_stgcn_block = {
    'max_iteration': 3, 
    'method': ['STGCN', 'IT-STGCN'], 
    'mindex': [mindex_block],
    'lags': [2, 4], 
    'nof_filters': [8,16], 
    'inter_method': ['nearest','linear'],
    'epoch': [1]
}
class PLNR_STGCN_BLOCK:
    def __init__(self,plans,loader,dataset_name=None,simulation_results=None):
        self.plans = plans
        col = ['dataset', 'method', 'mrate', 'mtype', 'lags', 'nof_filters', 'inter_method', 'epoch', 'mse']
        self.loader = loader
        self.dataset_name = dataset_name
        self.simulation_results = pd.DataFrame(columns=col) if simulation_results is None else simulation_results 
    def simulate(self):
        for _ in range(self.plans['max_iteration']):
            product_iterator = itertools.product(
                self.plans['method'], 
                self.plans['mindex'],
                self.plans['lags'],
                self.plans['nof_filters'],
                self.plans['inter_method'],
                self.plans['epoch']
            )
            for prod_iter in product_iterator:
                method,mrate,lags,nof_filters,inter_method,epoch = prod_iter
                self.dataset = self.loader.get_dataset(lags=lags)
                train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(self.dataset, train_ratio=0.8)
                mtype = 'block'
                train_dataset = padding(train_dataset_miss = miss(train_dataset,mindex=mindex,mtype=mtype),interpolation_method=inter_method)
                if method == 'STGCN':
                    lrnr = StgcnLearner(train_dataset,dataset_name=self.dataset_name)
                elif method == 'IT-STGCN':
                    lrnr = ITStgcnLearner(train_dataset,dataset_name=self.dataset_name)
                lrnr.learn(filters=nof_filters,epoch=epoch)
                evtor = Evaluator(lrnr,train_dataset,test_dataset)
                evtor.calculate_mse()
                mse = evtor.mse['test']['total']
                mrate= lrnr.mrate_total
                self._record(method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse)
    def _record(self,method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse):
        dct = {'dataset': self.dataset_name,
               'method': method,
               'mrate': mrate,
               'mtype': mtype, 
               'lags': lags,
               'nof_filters': nof_filters,
               'inter_method': inter_method,
               'epoch': epoch,
               'mse': mse
              }
        simulation_result_new = pd.Series(dct).to_frame().transpose()
        self.simulation_results = pd.concat([self.simulation_results,simulation_result_new]).reset_index(drop=True)
plnr = PLNR_STGCN_BLOCK(plans_stgcn_block,loader,dataset_name='five_nodes')
plnr.simulate()
1/1
df = plnr.simulation_results
df
dataset method mrate mtype lags nof_filters inter_method epoch mse
0 five_nodes STGCN 0.5 block 2 8 nearest 1 1.162601
1 five_nodes STGCN 0.5 block 2 8 linear 1 1.145895
2 five_nodes STGCN 0.5 block 2 16 nearest 1 1.166197
3 five_nodes STGCN 0.5 block 2 16 linear 1 1.165355
4 five_nodes STGCN 0.5 block 4 8 nearest 1 1.157954
5 five_nodes STGCN 0.5 block 4 8 linear 1 1.162674
6 five_nodes STGCN 0.5 block 4 16 nearest 1 1.179143
7 five_nodes STGCN 0.5 block 4 16 linear 1 1.175561
8 five_nodes IT-STGCN 0.5 block 2 8 nearest 1 1.195364
9 five_nodes IT-STGCN 0.5 block 2 8 linear 1 1.2184
10 five_nodes IT-STGCN 0.5 block 2 16 nearest 1 1.210481
11 five_nodes IT-STGCN 0.5 block 2 16 linear 1 1.169326
12 five_nodes IT-STGCN 0.5 block 4 8 nearest 1 1.193523
13 five_nodes IT-STGCN 0.5 block 4 8 linear 1 1.199567
14 five_nodes IT-STGCN 0.5 block 4 16 nearest 1 1.201094
15 five_nodes IT-STGCN 0.5 block 4 16 linear 1 1.210867
16 five_nodes STGCN 0.5 block 2 8 nearest 1 1.169622
17 five_nodes STGCN 0.5 block 2 8 linear 1 1.173848
18 five_nodes STGCN 0.5 block 2 16 nearest 1 1.176841
19 five_nodes STGCN 0.5 block 2 16 linear 1 1.15848
20 five_nodes STGCN 0.5 block 4 8 nearest 1 1.191304
21 five_nodes STGCN 0.5 block 4 8 linear 1 1.155874
22 five_nodes STGCN 0.5 block 4 16 nearest 1 1.188419
23 five_nodes STGCN 0.5 block 4 16 linear 1 1.197183
24 five_nodes IT-STGCN 0.5 block 2 8 nearest 1 1.210021
25 five_nodes IT-STGCN 0.5 block 2 8 linear 1 1.184674
26 five_nodes IT-STGCN 0.5 block 2 16 nearest 1 1.274009
27 five_nodes IT-STGCN 0.5 block 2 16 linear 1 1.188723
28 five_nodes IT-STGCN 0.5 block 4 8 nearest 1 1.217735
29 five_nodes IT-STGCN 0.5 block 4 8 linear 1 1.202317
30 five_nodes IT-STGCN 0.5 block 4 16 nearest 1 1.219543
31 five_nodes IT-STGCN 0.5 block 4 16 linear 1 1.202418
32 five_nodes STGCN 0.5 block 2 8 nearest 1 1.158991
33 five_nodes STGCN 0.5 block 2 8 linear 1 1.187762
34 five_nodes STGCN 0.5 block 2 16 nearest 1 1.182213
35 five_nodes STGCN 0.5 block 2 16 linear 1 1.161439
36 five_nodes STGCN 0.5 block 4 8 nearest 1 1.188787
37 five_nodes STGCN 0.5 block 4 8 linear 1 1.233327
38 five_nodes STGCN 0.5 block 4 16 nearest 1 1.15206
39 five_nodes STGCN 0.5 block 4 16 linear 1 1.161346
40 five_nodes IT-STGCN 0.5 block 2 8 nearest 1 1.215097
41 five_nodes IT-STGCN 0.5 block 2 8 linear 1 1.163064
42 five_nodes IT-STGCN 0.5 block 2 16 nearest 1 1.206054
43 five_nodes IT-STGCN 0.5 block 2 16 linear 1 1.177454
44 five_nodes IT-STGCN 0.5 block 4 8 nearest 1 1.233471
45 five_nodes IT-STGCN 0.5 block 4 8 linear 1 1.209842
46 five_nodes IT-STGCN 0.5 block 4 16 nearest 1 1.221017
47 five_nodes IT-STGCN 0.5 block 4 16 linear 1 1.218403

PLNR_GNAR_RAND

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
plans_gnar_rand = {
    'max_iteration': 3, 
#    'method': ['GNAR'], 
    'mrate': [0.0, 0.2, 0.4],
    'lags': [2, 4], 
#    'nof_filters': [8,16], 
    'inter_method': ['nearest','linear'],
#    'epoch': [1]
}
class PLNR_GNAR_RAND:
    def __init__(self,plans,loader,dataset_name=None,simulation_results=None):
        self.plans = plans
        col = ['dataset', 'method', 'mrate', 'mtype', 'lags', 'nof_filters', 'inter_method', 'epoch', 'mse']
        self.loader = loader
        self.dataset_name = dataset_name
        self.simulation_results = pd.DataFrame(columns=col) if simulation_results is None else simulation_results 
    def simulate(self):
        for _ in range(self.plans['max_iteration']):
            product_iterator = itertools.product(
                self.plans['mrate'],
                self.plans['lags'],
                self.plans['inter_method']
            )
            for prod_iter in product_iterator:
                mrate,lags,inter_method = prod_iter
                self.dataset = self.loader.get_dataset(lags=lags)
                train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(self.dataset, train_ratio=0.8)
                if mrate > 0: 
                    mtype = 'rand'
                    mindex = rand_mindex(train_dataset,mrate=mrate)
                    train_dataset = padding(train_dataset_miss = miss(train_dataset,mindex=mindex,mtype=mtype),interpolation_method=inter_method)
                elif mrate ==0: 
                    mtype = None
                    inter_method = None 
                method = 'GNAR'
                lrnr = GNARLearner(train_dataset,dataset_name=self.dataset_name)
                lrnr.learn()
                evtor = Evaluator(lrnr,train_dataset,test_dataset)
                evtor.calculate_mse()
                mse = evtor.mse['test']['total']
                nof_filters = None 
                epoch= None
                self._record(method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse)
    def _record(self,method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse):
        dct = {'dataset': self.dataset_name,
               'method': method,
               'mrate': mrate,
               'mtype': mtype, 
               'lags': lags,
               'nof_filters': nof_filters,
               'inter_method': inter_method,
               'epoch': epoch,
               'mse': mse
              }
        simulation_result_new = pd.Series(dct).to_frame().transpose()
        self.simulation_results = pd.concat([self.simulation_results,simulation_result_new]).reset_index(drop=True)
plnr = PLNR_GNAR_RAND(plans_gnar_rand,loader,dataset_name='five_nodes')
plnr.simulate()
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
plnr.simulation_results
dataset method mrate mtype lags nof_filters inter_method epoch mse
0 five_nodes GNAR 0.0 None 2 None None None 1.40683
1 five_nodes GNAR 0.0 None 2 None None None 1.40683
2 five_nodes GNAR 0.0 None 4 None None None 1.469004
3 five_nodes GNAR 0.0 None 4 None None None 1.469004
4 five_nodes GNAR 0.2 rand 2 None nearest None 1.40683
5 five_nodes GNAR 0.2 rand 2 None linear None 1.40683
6 five_nodes GNAR 0.2 rand 4 None nearest None 1.469004
7 five_nodes GNAR 0.2 rand 4 None linear None 1.469004
8 five_nodes GNAR 0.4 rand 2 None nearest None 1.40683
9 five_nodes GNAR 0.4 rand 2 None linear None 1.40683
10 five_nodes GNAR 0.4 rand 4 None nearest None 1.469004
11 five_nodes GNAR 0.4 rand 4 None linear None 1.469004
12 five_nodes GNAR 0.0 None 2 None None None 1.40683
13 five_nodes GNAR 0.0 None 2 None None None 1.40683
14 five_nodes GNAR 0.0 None 4 None None None 1.469004
15 five_nodes GNAR 0.0 None 4 None None None 1.469004
16 five_nodes GNAR 0.2 rand 2 None nearest None 1.40683
17 five_nodes GNAR 0.2 rand 2 None linear None 1.40683
18 five_nodes GNAR 0.2 rand 4 None nearest None 1.469004
19 five_nodes GNAR 0.2 rand 4 None linear None 1.469004
20 five_nodes GNAR 0.4 rand 2 None nearest None 1.40683
21 five_nodes GNAR 0.4 rand 2 None linear None 1.40683
22 five_nodes GNAR 0.4 rand 4 None nearest None 1.469004
23 five_nodes GNAR 0.4 rand 4 None linear None 1.469004
24 five_nodes GNAR 0.0 None 2 None None None 1.40683
25 five_nodes GNAR 0.0 None 2 None None None 1.40683
26 five_nodes GNAR 0.0 None 4 None None None 1.469004
27 five_nodes GNAR 0.0 None 4 None None None 1.469004
28 five_nodes GNAR 0.2 rand 2 None nearest None 1.40683
29 five_nodes GNAR 0.2 rand 2 None linear None 1.40683
30 five_nodes GNAR 0.2 rand 4 None nearest None 1.469004
31 five_nodes GNAR 0.2 rand 4 None linear None 1.469004
32 five_nodes GNAR 0.4 rand 2 None nearest None 1.40683
33 five_nodes GNAR 0.4 rand 2 None linear None 1.40683
34 five_nodes GNAR 0.4 rand 4 None nearest None 1.469004
35 five_nodes GNAR 0.4 rand 4 None linear None 1.469004

PLNR_GNAR_BLOCK

# _data = load_data('./data/fivenodes.pkl')

# _edges = torch.tensor(_data['edges']).nonzero().tolist()
# _FX = _data['f'].tolist()
# _node_ids = {'node1':0, 'node2':1, 'node3':2, 'node4':3, 'node5':4} 

data_dict = {'edges':_edges, 'node_ids':_node_ids, 'FX':_FX}
loader = DatasetLoader(data_dict)
mindex_block = [list(range(10,100)),[],list(range(50,80)),[],[]]
plans_gnar_block = {
    'max_iteration': 3, 
    'method': ['GNAR'], 
    'mindex': [mindex_block],
    'lags': [2, 4], 
    'inter_method': ['nearest','linear'],
}
class PLNR_GNAR_BLOCK:
    def __init__(self,plans,loader,dataset_name=None,simulation_results=None):
        self.plans = plans
        col = ['dataset', 'method', 'mrate', 'mtype', 'lags', 'nof_filters', 'inter_method', 'epoch', 'mse']
        self.loader = loader
        self.dataset_name = dataset_name
        self.simulation_results = pd.DataFrame(columns=col) if simulation_results is None else simulation_results 
    def simulate(self):
        for _ in range(self.plans['max_iteration']):
            product_iterator = itertools.product(
                self.plans['mindex'],
                self.plans['lags'],
                self.plans['inter_method']
            )
            for prod_iter in product_iterator:
                mrate,lags,inter_method = prod_iter
                self.dataset = self.loader.get_dataset(lags=lags)
                train_dataset, test_dataset = torch_geometric_temporal.signal.temporal_signal_split(self.dataset, train_ratio=0.8)
                mtype = 'block'
                train_dataset = padding(train_dataset_miss = miss(train_dataset,mindex=mindex,mtype=mtype),interpolation_method=inter_method)
                method = 'GNAR'
                lrnr = GNARLearner(train_dataset,dataset_name=self.dataset_name)
                lrnr.learn()
                evtor = Evaluator(lrnr,train_dataset,test_dataset)
                evtor.calculate_mse()
                mse = evtor.mse['test']['total']
                nof_filters = None 
                epoch= None
                mrate= lrnr.mrate_total
                self._record(method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse)
    def _record(self,method,mrate,mtype,lags,nof_filters,inter_method,epoch,mse):
        dct = {'dataset': self.dataset_name,
               'method': method,
               'mrate': mrate,
               'mtype': mtype, 
               'lags': lags,
               'nof_filters': nof_filters,
               'inter_method': inter_method,
               'epoch': epoch,
               'mse': mse
              }
        simulation_result_new = pd.Series(dct).to_frame().transpose()
        self.simulation_results = pd.concat([self.simulation_results,simulation_result_new]).reset_index(drop=True)
plnr = PLNR_GNAR_BLOCK(plans_gnar_block,loader,dataset_name='five_nodes')
plnr.simulate()
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
WARNING: diagonal entries present in original matrix, these will be removed
plnr.simulation_results
dataset method mrate mtype lags nof_filters inter_method epoch mse
0 five_nodes GNAR 0.5 block 2 None nearest None 1.40683
1 five_nodes GNAR 0.5 block 2 None linear None 1.40683
2 five_nodes GNAR 0.5 block 4 None nearest None 1.469004
3 five_nodes GNAR 0.5 block 4 None linear None 1.469004
4 five_nodes GNAR 0.5 block 2 None nearest None 1.40683
5 five_nodes GNAR 0.5 block 2 None linear None 1.40683
6 five_nodes GNAR 0.5 block 4 None nearest None 1.469004
7 five_nodes GNAR 0.5 block 4 None linear None 1.469004
8 five_nodes GNAR 0.5 block 2 None nearest None 1.40683
9 five_nodes GNAR 0.5 block 2 None linear None 1.40683
10 five_nodes GNAR 0.5 block 4 None nearest None 1.469004
11 five_nodes GNAR 0.5 block 4 None linear None 1.469004

여기부터 서연이코드

edges_tensor = torch.tensor(data['edges'])
fiveVTS = np.array(data['f'])
nonzero_indices = edges_tensor.nonzero()
fiveNet_edge = np.array(nonzero_indices).T
T = 200
N = 5 # number of Nodes
E = fiveNet_edge
V = np.array([1,2,3,4,5])
t = np.arange(0,T)
node_features = 1
edge_index = torch.tensor(E)
edge_attr = torch.tensor(np.array([1,1,1,1,1,1,1,1,1,1]),dtype=torch.float32)
edge_index
NameError: name 'edge_index' is not defined

- train / test

fiveVTS_train = fiveVTS[:int(len(fiveVTS)*0.8)]
fiveVTS_test = fiveVTS[int(len(fiveVTS)*0.8):]

Random Missing Values

class Missing:
    def __init__(self,df):
        self.df = df
        self.N = N
        self.number = []
    def miss(self,percent=0.5):
        self.missing = self.df.copy()
        self.percent = percent
        for i in range(self.N):
            #self.seed = np.random.choice(1000,1,replace=False)
            #np.random.seed(self.seed)
            self.number.append(np.random.choice(int(len(self.df))-1,int(len(self.df)*self.percent),replace=False))
            self.missing[self.number[i],i] = float('nan')
    def first_mean(self):
        self.train_mean = self.missing.copy()
        for i in range(self.N):
            self.train_mean[self.number[i],i] = np.nanmean(self.missing[:,i])
    def second_linear(self):
        self.train_linear = pd.DataFrame(self.missing)
        self.train_linear.interpolate(method='linear', inplace=True)
        self.train_linear = self.train_linear.fillna(0)
        self.train_linear = np.array(self.train_linear).reshape(int(len(self.df)),N)
col = ['Dataset','iteration', 'method', 'missingrate', 'missingtype', 'lag', 'number_of_filters', 'interpolation','MSE_train', 'MSE_test']

rate = [i/10 for i in range(10)]

Class code by Method

STGCN

class STGCN_Missing:
    def __init__(self,Dataset,df, iterable, Method, Missingrate, Missingtype, lag, Number_of_filters, Interpolation):
        self.Dataset = Dataset
        self.df = df
        self.iterable = iterable
        self.Method = Method
        self.Missingrate = Missingrate
        self.Missingtype = Missingtype
        self.lag = lag
        self.Number_of_filters = Number_of_filters
        self.Interpolation = Interpolation
    def iter(self):
        self.XX = torch.tensor(fiveVTS_test.reshape(int(T*0.2),N,1)[:-1,:,:]).float()
        self.yy = torch.tensor(fiveVTS_test.reshape(int(T*0.2),N,1)[1:,:,:]).float()

        self.real_y = torch.tensor(fiveVTS_train).reshape(int(T*0.8),N,1).float()[1:,:,:]
        for i in range(self.iterable):

            _zero = Missing(fiveVTS_train)
            _zero.miss(percent = self.Missingrate)
            _zero.second_linear()

            missing_index = _zero.number
            interpolated_signal = _zero.train_linear

            X = torch.tensor(interpolated_signal).reshape(int(T*0.8),N,1).float()[:int(T*0.8-1),:,:]
            y = torch.tensor(interpolated_signal).reshape(int(T*0.8),N,1).float()[1:,:,:]

            net = RecurrentGCN(node_features=self.lag, filters=self.Number_of_filters)
            optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
            net.train()
            for epoch in range(50):
                for time, (xt,yt) in enumerate(zip(X,y)):
                    yt_hat = net(xt, edge_index, edge_attr)
                    cost = torch.mean((yt_hat-yt)**2)
                    cost.backward()
                    optimizer.step()
                    optimizer.zero_grad()

            yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
            yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in self.XX]).detach().numpy()

            train_mse_total_stgcn = (((self.real_y-yhat).squeeze())**2).mean()
            test_mse_total_stgcn = (((self.yy-yyhat).squeeze())**2).mean() 

            df_row = pd.DataFrame(columns=col)
            df_row['Dataset'] = self.Dataset, 
            df_row['iteration'] = i+1, # 1,2,3,...,10 
            df_row['method'] = self.Method, # 'stgcn','estgcn','gnar' 
            df_row['missingrate'] = self.Missingrate, # 0.0, 0.2, 0.4, 0.6, 0.8 
            df_row['missingtype'] = self.Missingtype,  # None, 'randomly' and 'block' 
            df_row['lag'] = self.lag, # 1,2,3,4 ... 
            df_row['number_of_filters'] = self.Number_of_filters, # 16,24,32, ... 
            df_row['interpolation'] = self.Interpolation, # None, 'mean', 'linear'
            df_row['MSE_train'] = train_mse_total_stgcn.tolist()
            df_row['MSE_test'] = test_mse_total_stgcn.tolist()

            self.df = pd.concat([self.df,df_row])

Enhencement of STGCN

class ESTGCN_Missing:
    def __init__(self,Dataset,df, iterable, Method, Missingrate, Missingtype, lag, Number_of_filters, Interpolation):
        self.Dataset = Dataset
        self.df = df
        self.iterable = iterable
        self.Method = Method
        self.Missingrate = Missingrate
        self.Missingtype = Missingtype
        self.lag = lag
        self.Number_of_filters = Number_of_filters
        self.Interpolation = Interpolation
    def iter(self):
        self.XX = torch.tensor(fiveVTS_test.reshape(int(T*0.2),N,1)[:-1,:,:]).float()
        self.yy = torch.tensor(fiveVTS_test.reshape(int(T*0.2),N,1)[1:,:,:]).float()

        self.real_y = torch.tensor(fiveVTS_train).reshape(int(T*0.8),N,1).float()[1:,:,:]
        for i in range(self.iterable):
    
            _zero = Missing(fiveVTS_train)
            _zero.miss(percent = self.Missingrate)
            _zero.second_linear()

            missing_index = _zero.number
            interpolated_signal = _zero.train_linear

            X = torch.tensor(interpolated_signal).reshape(int(T*0.8),N,1).float()[:int(T*0.8-1),:,:]
            y = torch.tensor(interpolated_signal).reshape(int(T*0.8),N,1).float()[1:,:,:]


            net = RecurrentGCN(node_features=self.lag, filters=self.Number_of_filters)
            optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
            net.train()
            signal = interpolated_signal.copy()
            for epoch in range(50):
                signal = update_from_freq_domain(signal,missing_index)
                X = torch.tensor(signal).reshape(int(T*0.8),N,1).float()[:int(T*0.8-1),:,:]
                y = torch.tensor(signal).reshape(int(T*0.8),N,1).float()[1:,:,:]
                for time, (xt,yt) in enumerate(zip(X,y)):        
                    yt_hat = net(xt, edge_index, edge_attr)
                    cost = torch.mean((yt_hat-yt)**2)
                    cost.backward()
                    optimizer.step()
                    optimizer.zero_grad()
                signal = torch.concat([X.squeeze(),yt_hat.detach().squeeze().reshape(1,-1)])               

            yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
            yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in self.XX]).detach().numpy()

            train_mse_total_estgcn = (((self.real_y-yhat).squeeze())**2).mean()
            test_mse_total_estgcn = (((self.yy-yyhat).squeeze())**2).mean()

            df_row = pd.DataFrame(columns=col)
            df_row['Dataset'] = self.Dataset,
            df_row['iteration'] = i+1, # 1,2,3,...,10 
            df_row['method'] = self.Method, # 'stgcn','estgcn','gnar' 
            df_row['missingrate'] = self.Missingrate, # 0.0, 0.2, 0.4, 0.6, 0.8 
            df_row['missingtype'] = self.Missingtype,  # None, 'randomly' and 'block' 
            df_row['lag'] = self.lag, # 1,2,3,4 ... 
            df_row['number_of_filters'] = self.Number_of_filters, # 16,24,32, ... 
            df_row['interpolation'] = self.Interpolation, # None, 'mean', 'linear'
            df_row['MSE_train'] = train_mse_total_estgcn.tolist()
            df_row['MSE_test'] = test_mse_total_estgcn.tolist()

            self.df = pd.concat([self.df,df_row])

GNAR

m = robjects.r.matrix(FloatVector([0,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,1,1,0,0,1,0,0,0,0]), nrow = 5, ncol = 5)
class GNAR_Missing:
    def __init__(self,Dataset,df, iterable, Method, Missingrate, Missingtype, lag, Number_of_filters, Interpolation):
        self.Dataset = Dataset
        self.df = df
        self.iterable = iterable
        self.Method = Method
        self.Missingrate = Missingrate
        self.Missingtype = Missingtype
        self.lag = lag
        self.Number_of_filters = Number_of_filters
        self.Interpolation = Interpolation
    def iter(self):
        self.yy = torch.tensor(fiveVTS_test.reshape(int(T*0.2),N,1)[1:,:,:]).float()
        for i in range(self.iterable):

            _zero = Missing(fiveVTS_train)
            _zero.miss(percent = self.Missingrate)
            _zero.second_linear()

            missing_index = _zero.number
            interpolated_signal = _zero.train_linear

            X = torch.tensor(interpolated_signal).reshape(int(T*0.8),N,1).float()[:int(T*0.8-2),:,:]

            answer = GNAR.GNARfit(vts=robjects.r.matrix(rpyn.numpy2rpy(np.array(X).squeeze()), nrow = 160, ncol = 5),net = GNAR.matrixtoGNAR(m), alphaOrder = 2, betaOrder = FloatVector([1, 1]))             
            predict = GNAR.predict_GNARfit(answer,n_ahead=40)


            train_mse_total_gnar = ((pd.DataFrame(GNAR.residuals_GNARfit(answer)).values.reshape(-1,5))**2).mean()
            test_mse_total_gnar = ((self.yy.squeeze() - pd.DataFrame(predict).values.reshape(-1,5)[:-1,:])**2).mean()

            df_row = pd.DataFrame(columns=col)
            df_row['Dataset'] = self.Dataset,
            df_row['iteration'] = i+1, # 1,2,3,...,10 
            df_row['method'] = self.Method, # 'stgcn','estgcn','gnar' 
            df_row['missingrate'] = self.Missingrate, # 0.0, 0.2, 0.4, 0.6, 0.8 
            df_row['missingtype'] = self.Missingtype,  # None, 'randomly' and 'block' 
            df_row['lag'] = self.lag, # 1,2,3,4 ... 
            df_row['number_of_filters'] = self.Number_of_filters, # 16,24,32, ... 
            df_row['interpolation'] = self.Interpolation, # None, 'mean', 'linear'
            df_row['MSE_train'] = train_mse_total_gnar.tolist()
            df_row['MSE_test'] = test_mse_total_gnar.tolist()

            self.df = pd.concat([self.df,df_row])

STGCN

Dataset = 'fivenodes'
Method = 'stgcn' # 'stgcn','estgcn','gnar' 
Missingtype = 'randomly'  # None, 'randomly' and 'block' 
lag = 1 # 1,2,3,4 ... 
Number_of_filters = 4 # 16,24,32, ... 
Interpolation = 'Linear' # None, 'mean', 'linear'
iterable = 100
df_stgcn= pd.DataFrame(columns=col)
for Missingrate in rate:
    df = pd.DataFrame(columns=col)
    stgcn = STGCN_Missing(Dataset,df, iterable,Method, Missingrate, Missingtype, lag, Number_of_filters, Interpolation)
    stgcn.iter()
    df_add = stgcn.df.copy()
    df_stgcn = pd.concat([df_stgcn,df_add],axis=0)
save_data(df_stgcn, './data/GNAR_stgcn_randomly_by_rate.pkl')

Enhencement of STGCN

Dataset = 'fivenodes'
Method = 'estgcn' # 'stgcn','estgcn','gnar' 
Missingtype = 'randomly'  # None, 'randomly' and 'block' 
lag = 1 # 1,2,3,4 ... 
Number_of_filters = 4 # 16,24,32, ... 
Interpolation = 'Linear' # None, 'mean', 'linear'
iterable = 100
df_estgcn = pd.DataFrame(columns=col)
for Missingrate in rate:
    df = pd.DataFrame(columns=col)
    estgcn = ESTGCN_Missing(Dataset,df, iterable,Method, Missingrate, Missingtype, lag, Number_of_filters, Interpolation)
    estgcn.iter()
    df_add = estgcn.df.copy()
    df_estgcn = pd.concat([df_estgcn,df_add],axis=0)
save_data(df_estgcn, './data/GNAR_estgcn_randomly_by_rate.pkl')

GNAR

Dataset = 'fivenodes'
Method = 'gnar' # 'stgcn','estgcn','gnar' 
Missingtype = 'randomly'  # None, 'randomly' and 'block' 
lag = 1 # 1,2,3,4 ... 
Number_of_filters = None # 16,24,32, ... 
Interpolation = 'Linear' # None, 'mean', 'linear'
iterable = 100
df_gnar = pd.DataFrame(columns=col)
for Missingrate in rate:
    df = pd.DataFrame(columns=col)
    gnar = GNAR_Missing(Dataset,df, iterable,Method, Missingrate, Missingtype, lag, Number_of_filters, Interpolation)
    gnar.iter()
    df_add = gnar.df.copy()
    df_gnar = pd.concat([df_gnar,df_add],axis=0)
save_data(df_gnar, './data/GANR_gnar_randomly_by_rate.pkl')