import pandas as pd
Simulation Tables
ITSTGCN
Simulation Tables
import
= pd.read_csv('./simulation_results/Real_simulation/fivedones_Simulation.csv') data_fivenodes
'dataset']='fivenodes' data_fivenodes[
= pd.read_csv('./simulation_results/Real_simulation/chikenpox_Simulation.csv') data_chickenpox
'dataset'] = 'chickenpox' data_chickenpox[
= pd.read_csv('./simulation_results/Real_simulation/pedalme_Simulation.csv') data_pedalme
= pd.read_csv('./simulation_results/Real_simulation/wikimath.csv') data_wikimath
= pd.read_csv('./simulation_results/Real_simulation/wikimath_block.csv') data_wikimath_block
= pd.read_csv('./simulation_results/Real_simulation/windmillmedium.csv') data_windmillmedium
'dataset']='windmillmedium' data_windmillmedium[
= pd.read_csv('./simulation_results/Real_simulation/windmillsmall.csv') data_windmillsmall
'dataset'] = 'windmillsmall' data_windmillsmall[
= pd.read_csv('./simulation_results/Real_simulation/windmillsmall_block.csv') data_windmillsmall_block
'dataset'] = 'windmillsmall' data_windmillsmall_block[
= pd.read_csv('./simulation_results/Real_simulation/monte.csv') data_monte
= pd.read_csv('./simulation_results/Real_simulation/monte_block.csv') data_monte_block
= pd.concat([data_fivenodes,
data
data_chickenpox,
data_pedalme,
data_wikimath,
data_wikimath_block,
data_windmillmedium,
data_windmillsmall,
data_windmillsmall_block,
data_monte,
data_monte_block=0) ],axis
'RecurrentGCN'] = 'GConvGRU' data[
= data[['dataset','method','RecurrentGCN','mrate','mtype','lags','nof_filters','inter_method','epoch','mse']] data2
data2
dataset | method | RecurrentGCN | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | |
---|---|---|---|---|---|---|---|---|---|---|
0 | fivenodes | GNAR | GConvGRU | 0.700000 | rand | 2 | NaN | linear | NaN | 1.406830 |
1 | fivenodes | GNAR | GConvGRU | 0.750000 | rand | 2 | NaN | linear | NaN | 1.406830 |
2 | fivenodes | GNAR | GConvGRU | 0.800000 | rand | 2 | NaN | linear | NaN | 1.406830 |
3 | fivenodes | GNAR | GConvGRU | 0.850000 | rand | 2 | NaN | linear | NaN | 1.406830 |
4 | fivenodes | GNAR | GConvGRU | 0.700000 | rand | 2 | NaN | linear | NaN | 1.406830 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
361 | monte | GNAR | GConvGRU | 0.149142 | block | 8 | NaN | linear | NaN | 1.068464 |
362 | monte | GNAR | GConvGRU | 0.149142 | block | 4 | NaN | linear | NaN | 1.061937 |
363 | monte | GNAR | GConvGRU | 0.149142 | block | 8 | NaN | linear | NaN | 1.068464 |
364 | monte | GNAR | GConvGRU | 0.149142 | block | 4 | NaN | linear | NaN | 1.061937 |
365 | monte | GNAR | GConvGRU | 0.149142 | block | 8 | NaN | linear | NaN | 1.068464 |
8283 rows × 10 columns
'./simulation_results/Real_simulation/allresults.csv',index=False) data2.to_csv(
= pd.read_csv('./simulation_results/Real_simulation/allresults.csv') data
= pd.read_csv('./simulation_results/DCRNN/fivenodes_DVRNN.csv') data_DCRNN_fivenodes
= pd.read_csv('./simulation_results/DCRNN/chickenpox_DCRNN.csv') data_DCRNN_chickenpox
= pd.read_csv('./simulation_results/DCRNN/pedalme_DVRNN.csv') data_DCRNN_pedalme
= pd.read_csv('./simulation_results/DCRNN/wikimath_DCRNN.csv') data_DCRNN_wikimath
= pd.read_csv('./simulation_results/DCRNN/windmillsmall_DCRNN.csv') data_DCRNN_windmillsmall
Fivenodes
Baseline
"dataset=='fivenodes' and mtype!='block'")['mrate'].unique() data.query(
array([0.7 , 0.75, 0.8 , 0.85, 0. ])
"dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|
0 | 12.0 | IT-STGCN | 2 | 1.168 | 0.030 |
1 | 12.0 | STGCN | 2 | 1.173 | 0.036 |
2 | 16.0 | IT-STGCN | 2 | 1.166 | 0.039 |
3 | 16.0 | STGCN | 2 | 1.165 | 0.040 |
"dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','lags'])['mse'].std().reset_index(),
data.query(=['nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
nof_filters | lags | mean | std | |
---|---|---|---|---|
0 | 12.0 | 2 | 1.170 | 0.033 |
1 | 16.0 | 2 | 1.165 | 0.039 |
"dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','lags'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_fivenodes.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','lags'])['mse'].std().reset_index(),
data_DCRNN_fivenodes.query(=['nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
nof_filters | lags | mean | std | |
---|---|---|---|---|
0 | 16 | 2 | 1.247 | 0.005 |
Random
"dataset=='fivenodes' and mtype=='rand'and method=='GNAR'")['mse'].unique().round(3) data.query(
array([1.407])
"dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==12") on
mrate | nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|---|
0 | 0.70 | 12.0 | IT-STGCN | 2 | 1.200 | 0.070 |
1 | 0.70 | 12.0 | STGCN | 2 | 1.213 | 0.083 |
4 | 0.75 | 12.0 | IT-STGCN | 2 | 1.188 | 0.060 |
5 | 0.75 | 12.0 | STGCN | 2 | 1.239 | 0.102 |
8 | 0.80 | 12.0 | IT-STGCN | 2 | 1.221 | 0.083 |
9 | 0.80 | 12.0 | STGCN | 2 | 1.226 | 0.105 |
12 | 0.85 | 12.0 | IT-STGCN | 2 | 1.227 | 0.085 |
13 | 0.85 | 12.0 | STGCN | 2 | 1.291 | 0.252 |
"dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters!=12") on
mrate | nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|---|
2 | 0.70 | 16.0 | IT-STGCN | 2 | 1.201 | 0.068 |
3 | 0.70 | 16.0 | STGCN | 2 | 1.227 | 0.094 |
6 | 0.75 | 16.0 | IT-STGCN | 2 | 1.231 | 0.110 |
7 | 0.75 | 16.0 | STGCN | 2 | 1.201 | 0.072 |
10 | 0.80 | 16.0 | IT-STGCN | 2 | 1.232 | 0.092 |
11 | 0.80 | 16.0 | STGCN | 2 | 1.292 | 0.148 |
14 | 0.85 | 16.0 | IT-STGCN | 2 | 1.286 | 0.297 |
15 | 0.85 | 16.0 | STGCN | 2 | 1.362 | 0.239 |
"dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_fivenodes.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
data_DCRNN_fivenodes.query(=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters!=12 and mrate!=0.3") on
mrate | nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|---|
2 | 0.8 | 16 | IT-STGCN | 2 | 1.478 | 1.245 |
3 | 0.8 | 16 | STGCN | 2 | 1.491 | 0.302 |
Block
"dataset=='fivenodes' and mtype=='block'and method=='GNAR'")['mse'].unique().round(3) data.query(
array([1.407])
"dataset=='fivenodes' and mtype=='block'") data.query(
dataset | method | RecurrentGCN | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | |
---|---|---|---|---|---|---|---|---|---|---|
600 | fivenodes | GNAR | GConvGRU | 0.125 | block | 2 | NaN | cubic | NaN | 1.406830 |
601 | fivenodes | GNAR | GConvGRU | 0.125 | block | 2 | NaN | linear | NaN | 1.406830 |
602 | fivenodes | GNAR | GConvGRU | 0.125 | block | 2 | NaN | cubic | NaN | 1.406830 |
603 | fivenodes | GNAR | GConvGRU | 0.125 | block | 2 | NaN | linear | NaN | 1.406830 |
604 | fivenodes | GNAR | GConvGRU | 0.125 | block | 2 | NaN | cubic | NaN | 1.406830 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
967 | fivenodes | IT-STGCN | GConvGRU | 0.300 | block | 2 | 16.0 | linear | 150.0 | 1.135442 |
968 | fivenodes | STGCN | GConvGRU | 0.300 | block | 2 | 12.0 | linear | 150.0 | 1.203593 |
969 | fivenodes | STGCN | GConvGRU | 0.300 | block | 2 | 16.0 | linear | 150.0 | 1.220799 |
970 | fivenodes | IT-STGCN | GConvGRU | 0.300 | block | 2 | 12.0 | linear | 150.0 | 1.111655 |
971 | fivenodes | IT-STGCN | GConvGRU | 0.300 | block | 2 | 16.0 | linear | 150.0 | 1.197438 |
372 rows × 10 columns
"dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 0.125 | 12.0 | IT-STGCN | 4.308 | 3.333 |
1 | 0.125 | 12.0 | STGCN | 6.722 | 5.755 |
2 | 0.125 | 16.0 | IT-STGCN | 4.633 | 3.737 |
3 | 0.125 | 16.0 | STGCN | 6.858 | 5.814 |
4 | 0.300 | 12.0 | IT-STGCN | 1.178 | 0.032 |
5 | 0.300 | 12.0 | STGCN | 1.232 | 0.040 |
6 | 0.300 | 16.0 | IT-STGCN | 1.163 | 0.050 |
7 | 0.300 | 16.0 | STGCN | 1.232 | 0.053 |
epoch 별 보기
= pd.read_csv('./simulation_results/fivenodes/fivenodes_STGCN_ITSTGCN_random_epoch50.csv')
df1 = pd.read_csv('./simulation_results/fivenodes/fivenodes_STGCN_ITSTGCN_random_epoch100.csv')
df2 = pd.read_csv('./simulation_results/fivenodes/fivenodes_STGCN_ITSTGCN_random_epoch150.csv')
df3 = pd.read_csv('./simulation_results/fivenodes/fivenodes_STGCN_ITSTGCN_random_epoch200.csv') df4
= pd.read_csv('./simulation_results/fivenodes/fivenodes_GNAR_random.csv') df_gnar
= pd.concat([df1,df2,df3,df4,df_gnar],axis=0) data_temp
STGCN은 nearest에서 mse가 낮았다.
"method=='STGCN' and mtype=='rand' and mrate==0.8 and lags==2 and inter_method=='linear' and nof_filters==4").\
data_temp.query('method','epoch','mrate','lags','nof_filters','inter_method'])['mse'].mean().reset_index()['mse'].mean() groupby([
1.182556539773941
"method=='STGCN' and mtype=='rand' and mrate==0.8 and lags==2 and inter_method=='linear' and nof_filters==4").\
data_temp.query('method','epoch','mrate','lags','nof_filters','inter_method'])['mse'].mean().reset_index()['mse'].std() groupby([
0.012169932740213692
"method=='IT-STGCN' and mtype=='rand' and mrate==0.8 and lags==2 and inter_method=='linear' and nof_filters==4").\
data_temp.query('method','epoch','mrate','lags','nof_filters','inter_method'])['mse'].mean().reset_index()['mse'].mean() groupby([
1.1747438261906304
"method=='IT-STGCN' and mtype=='rand' and mrate==0.8 and lags==2 and inter_method=='linear' and nof_filters==4").\
data_temp.query('method','epoch','mrate','lags','nof_filters','inter_method'])['mse'].mean().reset_index()['mse'].std() groupby([
0.007602895892378366
ChickenpoxDatasetLoader(lags=4)
Baseline
"dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==16") on
nof_filters | method | mean | std | |
---|---|---|---|---|
0 | 16.0 | IT-STGCN | 1.008 | 0.010 |
1 | 16.0 | STGCN | 1.009 | 0.008 |
"dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_chickenpox.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_chickenpox.query(=['method','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==16") on
nof_filters | method | mean | std | |
---|---|---|---|---|
0 | 16 | IT-STGCN | 0.953 | 0.005 |
1 | 16 | STGCN | 0.953 | 0.006 |
Random
"dataset=='chickenpox' and mtype=='rand'and method=='GNAR'")['mse'].unique().round(3) data.query(
array([1.427])
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.3 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | cubic | 16.0 | IT-STGCN | 1.019 | 0.011 |
1 | 0.3 | cubic | 16.0 | STGCN | 1.059 | 0.013 |
6 | 0.3 | linear | 16.0 | IT-STGCN | 1.015 | 0.009 |
7 | 0.3 | linear | 16.0 | STGCN | 1.040 | 0.014 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_chickenpox.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_chickenpox.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.3 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | cubic | 16 | IT-STGCN | 0.985 | 0.008 |
1 | 0.3 | cubic | 16 | STGCN | 1.053 | 0.008 |
2 | 0.3 | linear | 16 | IT-STGCN | 0.983 | 0.007 |
3 | 0.3 | linear | 16 | STGCN | 1.028 | 0.012 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_chickenpox.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_chickenpox.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.4 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
4 | 0.4 | cubic | 16 | IT-STGCN | 0.995 | 0.009 |
5 | 0.4 | cubic | 16 | STGCN | 1.069 | 0.011 |
6 | 0.4 | linear | 16 | IT-STGCN | 0.994 | 0.008 |
7 | 0.4 | linear | 16 | STGCN | 1.038 | 0.011 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.4 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
12 | 0.4 | cubic | 16.0 | IT-STGCN | 1.021 | 0.009 |
13 | 0.4 | cubic | 16.0 | STGCN | 1.084 | 0.025 |
18 | 0.4 | linear | 16.0 | IT-STGCN | 1.020 | 0.009 |
19 | 0.4 | linear | 16.0 | STGCN | 1.051 | 0.014 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.5 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
24 | 0.5 | cubic | 16.0 | IT-STGCN | 1.027 | 0.012 |
25 | 0.5 | cubic | 16.0 | STGCN | 1.128 | 0.042 |
30 | 0.5 | linear | 16.0 | IT-STGCN | 1.026 | 0.014 |
31 | 0.5 | linear | 16.0 | STGCN | 1.071 | 0.016 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_chickenpox.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_chickenpox.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.5 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
8 | 0.5 | cubic | 16 | IT-STGCN | 1.011 | 0.007 |
9 | 0.5 | cubic | 16 | STGCN | 1.080 | 0.019 |
10 | 0.5 | linear | 16 | IT-STGCN | 1.008 | 0.007 |
11 | 0.5 | linear | 16 | STGCN | 1.055 | 0.010 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.8 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
36 | 0.8 | cubic | 16.0 | IT-STGCN | 1.206 | 0.117 |
37 | 0.8 | cubic | 16.0 | STGCN | 1.266 | 0.152 |
42 | 0.8 | linear | 16.0 | IT-STGCN | 1.101 | 0.034 |
43 | 0.8 | linear | 16.0 | STGCN | 1.166 | 0.059 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_chickenpox.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_chickenpox.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.8 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
12 | 0.8 | cubic | 16 | IT-STGCN | 1.181 | 0.142 |
13 | 0.8 | cubic | 16 | STGCN | 1.417 | 0.663 |
14 | 0.8 | linear | 16 | IT-STGCN | 1.058 | 0.015 |
15 | 0.8 | linear | 16 | STGCN | 1.102 | 0.027 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.9 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
48 | 0.9 | cubic | 16.0 | IT-STGCN | 1.228 | 0.199 |
49 | 0.9 | cubic | 16.0 | STGCN | 1.283 | 0.222 |
54 | 0.9 | linear | 16.0 | IT-STGCN | 1.251 | 0.106 |
55 | 0.9 | linear | 16.0 | STGCN | 1.265 | 0.148 |
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_chickenpox.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_chickenpox.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.9 and nof_filters==16") on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
16 | 0.9 | cubic | 16 | IT-STGCN | 2.372 | 1.841 |
17 | 0.9 | cubic | 16 | STGCN | 1.596 | 0.648 |
18 | 0.9 | linear | 16 | IT-STGCN | 1.090 | 0.045 |
19 | 0.9 | linear | 16 | STGCN | 1.179 | 0.127 |
Block
"dataset=='chickenpox' and mtype=='block'and method=='GNAR'")['mse'].unique() data.query(
array([1.42749429])
"dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==16") on
inter_method | mrate | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | cubic | 0.288 | 16.0 | IT-STGCN | 1.052 | 0.028 |
1 | cubic | 0.288 | 16.0 | STGCN | 1.052 | 0.023 |
6 | linear | 0.288 | 16.0 | IT-STGCN | 1.008 | 0.005 |
7 | linear | 0.288 | 16.0 | STGCN | 1.011 | 0.008 |
PedalMeDatasetLoader (lags=4)
Baseline
"dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','lags','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
lags | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 4 | 12.0 | IT-STGCN | 1.241 | 0.04 |
1 | 4 | 12.0 | STGCN | 1.271 | 0.04 |
1.241+1.271)/2 (
1.256
"dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_pedalme.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
data_DCRNN_pedalme.query(=['method','lags','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 4 | 12 | IT-STGCN | 1.204 | 0.020 |
1 | 4 | 12 | STGCN | 1.203 | 0.022 |
1.204+1.203)/2 (
1.2035
Random
"dataset=='pedalme' and method=='GNAR' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index().query(" lags==4") data.query(
mrate | lags | inter_method | method | mse | |
---|---|---|---|---|---|
0 | 0.3 | 4 | cubic | GNAR | 1.302679 |
1 | 0.3 | 4 | linear | GNAR | 1.302679 |
2 | 0.4 | 4 | cubic | GNAR | 1.302679 |
3 | 0.4 | 4 | linear | GNAR | 1.302679 |
4 | 0.5 | 4 | cubic | GNAR | 1.302679 |
5 | 0.5 | 4 | linear | GNAR | 1.302679 |
6 | 0.6 | 4 | cubic | GNAR | 1.302679 |
7 | 0.6 | 4 | linear | GNAR | 1.302679 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.3 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | cubic | GNAR | 1.303 | 0.000 |
1 | 0.3 | 4 | cubic | IT-STGCN | 1.314 | 0.109 |
2 | 0.3 | 4 | cubic | STGCN | 1.363 | 0.115 |
3 | 0.3 | 4 | linear | GNAR | 1.303 | 0.000 |
4 | 0.3 | 4 | linear | IT-STGCN | 1.323 | 0.094 |
5 | 0.3 | 4 | linear | STGCN | 1.380 | 0.127 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_pedalme.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_DCRNN_pedalme.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.3 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | cubic | IT-STGCN | 1.223 | 0.031 |
1 | 0.3 | 4 | cubic | STGCN | 1.248 | 0.039 |
2 | 0.3 | 4 | linear | IT-STGCN | 1.227 | 0.026 |
3 | 0.3 | 4 | linear | STGCN | 1.242 | 0.031 |
4 | 0.3 | 4 | nearest | IT-STGCN | 1.231 | 0.032 |
5 | 0.3 | 4 | nearest | STGCN | 1.229 | 0.032 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.4 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
10 | 0.4 | 4 | cubic | GNAR | 1.303 | 0.000 |
11 | 0.4 | 4 | cubic | IT-STGCN | 1.331 | 0.112 |
12 | 0.4 | 4 | cubic | STGCN | 1.342 | 0.108 |
13 | 0.4 | 4 | linear | GNAR | 1.303 | 0.000 |
14 | 0.4 | 4 | linear | IT-STGCN | 1.375 | 0.154 |
15 | 0.4 | 4 | linear | STGCN | 1.397 | 0.193 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_pedalme.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_DCRNN_pedalme.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query(" mrate==0.4 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
6 | 0.4 | 4 | cubic | IT-STGCN | 1.230 | 0.030 |
7 | 0.4 | 4 | cubic | STGCN | 1.257 | 0.051 |
8 | 0.4 | 4 | linear | IT-STGCN | 1.231 | 0.032 |
9 | 0.4 | 4 | linear | STGCN | 1.251 | 0.040 |
10 | 0.4 | 4 | nearest | IT-STGCN | 1.235 | 0.031 |
11 | 0.4 | 4 | nearest | STGCN | 1.241 | 0.033 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.5 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
20 | 0.5 | 4 | cubic | GNAR | 1.303 | 0.000 |
21 | 0.5 | 4 | cubic | IT-STGCN | 1.328 | 0.108 |
22 | 0.5 | 4 | cubic | STGCN | 1.367 | 0.114 |
23 | 0.5 | 4 | linear | GNAR | 1.303 | 0.000 |
24 | 0.5 | 4 | linear | IT-STGCN | 1.377 | 0.138 |
25 | 0.5 | 4 | linear | STGCN | 1.326 | 0.129 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_pedalme.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_DCRNN_pedalme.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query(" mrate==0.5 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
12 | 0.5 | 4 | cubic | IT-STGCN | 1.251 | 0.034 |
13 | 0.5 | 4 | cubic | STGCN | 1.279 | 0.095 |
14 | 0.5 | 4 | linear | IT-STGCN | 1.241 | 0.037 |
15 | 0.5 | 4 | linear | STGCN | 1.268 | 0.052 |
16 | 0.5 | 4 | nearest | IT-STGCN | 1.245 | 0.034 |
17 | 0.5 | 4 | nearest | STGCN | 1.256 | 0.043 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.6 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
30 | 0.6 | 4 | cubic | GNAR | 1.303 | 0.000 |
31 | 0.6 | 4 | cubic | IT-STGCN | 1.300 | 0.063 |
32 | 0.6 | 4 | cubic | STGCN | 1.352 | 0.106 |
33 | 0.6 | 4 | linear | GNAR | 1.303 | 0.000 |
34 | 0.6 | 4 | linear | IT-STGCN | 1.416 | 0.169 |
35 | 0.6 | 4 | linear | STGCN | 1.326 | 0.106 |
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_pedalme.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_DCRNN_pedalme.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("mrate==0.6 and lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
18 | 0.6 | 4 | cubic | IT-STGCN | 1.259 | 0.052 |
19 | 0.6 | 4 | cubic | STGCN | 1.313 | 0.193 |
20 | 0.6 | 4 | linear | IT-STGCN | 1.243 | 0.036 |
21 | 0.6 | 4 | linear | STGCN | 1.280 | 0.064 |
22 | 0.6 | 4 | nearest | IT-STGCN | 1.254 | 0.037 |
23 | 0.6 | 4 | nearest | STGCN | 1.271 | 0.050 |
Block
"dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
4 | 0.143 | 4 | cubic | GNAR | 1.303 | 0.000 |
5 | 0.143 | 4 | cubic | IT-STGCN | 1.284 | 0.053 |
6 | 0.143 | 4 | cubic | STGCN | 1.288 | 0.071 |
7 | 0.143 | 4 | linear | GNAR | 1.303 | 0.000 |
14 | 0.286 | 4 | cubic | GNAR | 1.303 | 0.000 |
15 | 0.286 | 4 | cubic | IT-STGCN | 1.304 | 0.050 |
16 | 0.286 | 4 | cubic | STGCN | 1.377 | 0.061 |
17 | 0.286 | 4 | linear | GNAR | 1.303 | 0.000 |
18 | 0.286 | 4 | linear | IT-STGCN | 1.335 | 0.062 |
19 | 0.286 | 4 | linear | STGCN | 1.350 | 0.056 |
W_st
= pd.read_csv('./simulation_results/Real_simulation/pedalme_Simulation_itstgcnsnd.csv') data_pedalme_wst
"mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_pedalme_wst.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_pedalme_wst.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | cubic | IT-STGCN | 1.353 | 0.141 |
1 | 0.3 | 4 | cubic | STGCN | 1.360 | 0.131 |
2 | 0.3 | 4 | linear | IT-STGCN | 1.337 | 0.122 |
3 | 0.3 | 4 | linear | STGCN | 1.353 | 0.117 |
4 | 0.3 | 4 | nearest | IT-STGCN | 1.316 | 0.122 |
5 | 0.3 | 4 | nearest | STGCN | 1.403 | 0.134 |
12 | 0.4 | 4 | cubic | IT-STGCN | 1.332 | 0.166 |
13 | 0.4 | 4 | cubic | STGCN | 1.344 | 0.123 |
14 | 0.4 | 4 | linear | IT-STGCN | 1.355 | 0.139 |
15 | 0.4 | 4 | linear | STGCN | 1.393 | 0.168 |
16 | 0.4 | 4 | nearest | IT-STGCN | 1.386 | 0.128 |
17 | 0.4 | 4 | nearest | STGCN | 1.341 | 0.129 |
24 | 0.5 | 4 | cubic | IT-STGCN | 1.312 | 0.152 |
25 | 0.5 | 4 | cubic | STGCN | 1.362 | 0.129 |
26 | 0.5 | 4 | linear | IT-STGCN | 1.344 | 0.177 |
27 | 0.5 | 4 | linear | STGCN | 1.335 | 0.117 |
28 | 0.5 | 4 | nearest | IT-STGCN | 1.335 | 0.153 |
29 | 0.5 | 4 | nearest | STGCN | 1.350 | 0.129 |
36 | 0.6 | 4 | cubic | IT-STGCN | 1.346 | 0.151 |
37 | 0.6 | 4 | cubic | STGCN | 1.398 | 0.103 |
38 | 0.6 | 4 | linear | IT-STGCN | 1.365 | 0.177 |
39 | 0.6 | 4 | linear | STGCN | 1.353 | 0.087 |
40 | 0.6 | 4 | nearest | IT-STGCN | 1.402 | 0.269 |
41 | 0.6 | 4 | nearest | STGCN | 1.339 | 0.111 |
48 | 0.7 | 4 | cubic | IT-STGCN | 1.377 | 0.173 |
49 | 0.7 | 4 | cubic | STGCN | 1.363 | 0.097 |
50 | 0.7 | 4 | linear | IT-STGCN | 1.355 | 0.144 |
51 | 0.7 | 4 | linear | STGCN | 1.288 | 0.063 |
52 | 0.7 | 4 | nearest | IT-STGCN | 1.383 | 0.157 |
53 | 0.7 | 4 | nearest | STGCN | 1.334 | 0.124 |
"mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_pedalme_wst.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_pedalme_wst.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
6 | 0.286 | 4 | cubic | IT-STGCN | 1.260 | 0.063 |
7 | 0.286 | 4 | cubic | STGCN | 1.417 | 0.065 |
8 | 0.286 | 4 | linear | IT-STGCN | 1.276 | 0.065 |
9 | 0.286 | 4 | linear | STGCN | 1.288 | 0.055 |
10 | 0.286 | 4 | nearest | IT-STGCN | 1.275 | 0.061 |
11 | 0.286 | 4 | nearest | STGCN | 1.312 | 0.061 |
WikiMathsDatasetLoader (lags=8)
Baseline
"dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index().round(3).query("lags==8") data.query(
lags | nof_filters | method | mse | |
---|---|---|---|---|
4 | 8 | 12.0 | IT-STGCN | 0.771 |
5 | 8 | 12.0 | STGCN | 0.772 |
"dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index().round(3).query("lags==8") data_DCRNN_wikimath.query(
lags | nof_filters | method | mse | |
---|---|---|---|---|
0 | 8 | 12 | IT-STGCN | 0.778 |
1 | 8 | 12 | STGCN | 0.759 |
Random
"dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==8") on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
6 | 0.3 | 8 | IT-STGCN | 0.781 | 0.012 |
7 | 0.3 | 8 | STGCN | 0.779 | 0.013 |
14 | 0.5 | 8 | IT-STGCN | 0.802 | 0.041 |
15 | 0.5 | 8 | STGCN | 0.806 | 0.020 |
"dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_wikimath.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data_DCRNN_wikimath.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==8") on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.3 | 8 | IT-STGCN | 0.759 | 0.021 |
1 | 0.3 | 8 | STGCN | 0.774 | 0.030 |
Block
"dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.003841 | 2 | IT-STGCN | 0.810475 | 0.033897 |
1 | 0.003841 | 2 | STGCN | 0.801502 | 0.015510 |
2 | 0.003841 | 4 | IT-STGCN | 0.779852 | 0.013188 |
3 | 0.003841 | 4 | STGCN | 0.779816 | 0.019309 |
missing values on the same nodes
= pd.read_csv('./simulation_results/Real_simulation/wikimath_GSO_st.csv') data_wikimath_st
'mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data_wikimath_st.groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data_wikimath_st.groupby([=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.123 | 4 | IT-STGCN | 0.774 | 0.008 |
1 | 0.123 | 4 | STGCN | 0.766 | 0.010 |
2 | 0.738 | 4 | IT-STGCN | 0.851 | 0.029 |
3 | 0.738 | 4 | STGCN | 0.831 | 0.031 |
WindmillOutputSmallDatasetLoader (lags=8)
Baseline
"dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
data.query(=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | method | mean | std | |
---|---|---|---|---|
0 | 8 | GNAR | 1.649 | 0.000 |
1 | 8 | IT-STGCN | 1.006 | 0.006 |
2 | 8 | STGCN | 1.001 | 0.003 |
"dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_windmillsmall.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
data_DCRNN_windmillsmall.query(=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | method | mean | std | |
---|---|---|---|---|
0 | 8 | IT-STGCN | 1.000 | NaN |
1 | 8 | STGCN | 1.001 | NaN |
Random
"dataset=='windmillsmall' and mtype=='rand'") data.query(
dataset | method | RecurrentGCN | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | |
---|---|---|---|---|---|---|---|---|---|---|
7097 | windmillsmall | STGCN | GConvGRU | 0.7 | rand | 8 | 12.0 | linear | 50.0 | 1.436077 |
7098 | windmillsmall | IT-STGCN | GConvGRU | 0.7 | rand | 8 | 12.0 | linear | 50.0 | 1.290896 |
7099 | windmillsmall | STGCN | GConvGRU | 0.7 | rand | 8 | 12.0 | linear | 50.0 | 1.410098 |
7100 | windmillsmall | IT-STGCN | GConvGRU | 0.7 | rand | 8 | 12.0 | linear | 50.0 | 1.176981 |
7101 | windmillsmall | STGCN | GConvGRU | 0.7 | rand | 8 | 12.0 | linear | 50.0 | 1.447851 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
7180 | windmillsmall | GNAR | GConvGRU | 0.7 | rand | 8 | NaN | linear | NaN | 1.649230 |
7181 | windmillsmall | GNAR | GConvGRU | 0.7 | rand | 8 | NaN | linear | NaN | 1.649230 |
7182 | windmillsmall | GNAR | GConvGRU | 0.7 | rand | 8 | NaN | linear | NaN | 1.649230 |
7183 | windmillsmall | GNAR | GConvGRU | 0.7 | rand | 8 | NaN | linear | NaN | 1.649230 |
7184 | windmillsmall | GNAR | GConvGRU | 0.7 | rand | 8 | NaN | linear | NaN | 1.649230 |
88 rows × 10 columns
"dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.7 | 8 | GNAR | 1.649 | 0.000 |
1 | 0.7 | 8 | IT-STGCN | 1.178 | 0.054 |
2 | 0.7 | 8 | STGCN | 1.410 | 0.075 |
"dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data_DCRNN_windmillsmall.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data_DCRNN_windmillsmall.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mean | mrate | lags | method | std |
---|
Block
"dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.325 | 8 | GNAR | 1.649 | 0.000 |
1 | 0.325 | 8 | IT-STGCN | 1.015 | 0.009 |
2 | 0.325 | 8 | STGCN | 1.017 | 0.008 |
Montevideobus (lags=4)
Baseline
round(data.query("dataset=='monte' and mrate==0")['mse'].mean(),3),round(data_monte.query("mrate==0")['mse'].std(),3)
(0.97, 0.024)
Random
"dataset=='monte' and mtype=='rand'") data.query(
dataset | method | RecurrentGCN | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | |
---|---|---|---|---|---|---|---|---|---|---|
7307 | monte | STGCN | GConvGRU | 0.3 | rand | 8 | 12.0 | linear | 50.0 | 0.972491 |
7308 | monte | IT-STGCN | GConvGRU | 0.3 | rand | 8 | 12.0 | linear | 50.0 | 0.974410 |
7309 | monte | STGCN | GConvGRU | 0.3 | rand | 8 | 12.0 | linear | 50.0 | 0.968628 |
7310 | monte | IT-STGCN | GConvGRU | 0.3 | rand | 8 | 12.0 | linear | 50.0 | 0.976796 |
7311 | monte | STGCN | GConvGRU | 0.3 | rand | 8 | 12.0 | linear | 50.0 | 0.973314 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
7872 | monte | IT-STGCN | GConvGRU | 0.9 | rand | 8 | 12.0 | linear | 50.0 | 1.030140 |
7873 | monte | STGCN | GConvGRU | 0.9 | rand | 8 | 12.0 | linear | 50.0 | 1.040731 |
7874 | monte | IT-STGCN | GConvGRU | 0.9 | rand | 8 | 12.0 | linear | 50.0 | 1.041819 |
7875 | monte | STGCN | GConvGRU | 0.9 | rand | 8 | 12.0 | linear | 50.0 | 1.023531 |
7876 | monte | IT-STGCN | GConvGRU | 0.9 | rand | 8 | 12.0 | linear | 50.0 | 1.032515 |
504 rows × 10 columns
"dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.3 | 4 | GNAR | 1.061937 | 0.000000 |
1 | 0.3 | 4 | IT-STGCN | 0.971925 | 0.001871 |
2 | 0.3 | 4 | STGCN | 0.965885 | 0.002552 |
3 | 0.3 | 8 | GNAR | 1.068464 | 0.000000 |
4 | 0.3 | 8 | IT-STGCN | 0.974867 | 0.003233 |
5 | 0.3 | 8 | STGCN | 0.972051 | 0.002383 |
6 | 0.4 | 4 | GNAR | 1.061937 | 0.000000 |
7 | 0.4 | 4 | IT-STGCN | 0.976348 | 0.001374 |
8 | 0.4 | 4 | STGCN | 0.967480 | 0.002974 |
9 | 0.4 | 8 | GNAR | 1.068464 | 0.000000 |
10 | 0.4 | 8 | IT-STGCN | 0.978809 | 0.002110 |
11 | 0.4 | 8 | STGCN | 0.973098 | 0.002613 |
12 | 0.8 | 4 | GNAR | 1.061937 | 0.000000 |
13 | 0.8 | 4 | IT-STGCN | 1.006583 | 0.003297 |
14 | 0.8 | 4 | STGCN | 0.999715 | 0.006909 |
15 | 0.8 | 8 | GNAR | 1.068464 | 0.000000 |
16 | 0.8 | 8 | IT-STGCN | 1.004450 | 0.002953 |
17 | 0.8 | 8 | STGCN | 1.005238 | 0.005777 |
18 | 0.9 | 4 | GNAR | 1.061937 | 0.000000 |
19 | 0.9 | 4 | IT-STGCN | 1.034162 | 0.005611 |
20 | 0.9 | 4 | STGCN | 1.034995 | 0.006551 |
21 | 0.9 | 8 | GNAR | 1.068464 | 0.000000 |
22 | 0.9 | 8 | IT-STGCN | 1.030283 | 0.007979 |
23 | 0.9 | 8 | STGCN | 1.031538 | 0.009285 |
Block
"dataset=='monte' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.149142 | 4 | GNAR | 1.061937 | 0.000000 |
1 | 0.149142 | 4 | IT-STGCN | 0.963990 | 0.002194 |
2 | 0.149142 | 4 | STGCN | 0.965297 | 0.001611 |
3 | 0.149142 | 8 | GNAR | 1.068464 | 0.000000 |
4 | 0.149142 | 8 | IT-STGCN | 0.971647 | 0.002860 |
5 | 0.149142 | 8 | STGCN | 0.971700 | 0.001672 |