import pandas as pd
GConvGRU and GNAR_Simulation Tables_reshape
ITSTGCN
Simulation Tables
import
= pd.read_csv('./simulation_results/Real_simulation_reshape/fivedones_Simulation.csv') data_fivenodes
= pd.read_csv('./simulation_results/Real_simulation_reshape/chikenpox_Simulation.csv') data_chickenpox
= pd.read_csv('./simulation_results/Real_simulation_reshape/pedalme_Simulation.csv') data_pedal
= pd.read_csv('./simulation_results/Real_simulation_reshape/pedalme_Simulation_itstgcnsnd.csv') data_pedal2
= pd.read_csv('./simulation_results/Real_simulation_reshape/wikimath.csv') data__wiki
= pd.read_csv('./simulation_results/Real_simulation_reshape/wikimath_GSO_st.csv') data_wiki_GSO
= pd.read_csv('./simulation_results/Real_simulation_reshape/windmillsmall.csv') data_windmillsmall
= pd.read_csv('./simulation_results/Real_simulation_reshape/monte.csv') data_monte
= pd.concat([data_fivenodes,data_chickenpox,data_pedal,data__wiki,data_windmillsmall,data_monte]);data data
dataset | method | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | calculation_time | |
---|---|---|---|---|---|---|---|---|---|---|
0 | fivenodes | STGCN | 0.0 | NaN | 2 | 12 | NaN | 50 | 0.729374 | 80.985221 |
1 | fivenodes | STGCN | 0.0 | NaN | 2 | 12 | NaN | 50 | 0.729082 | 80.891788 |
2 | fivenodes | STGCN | 0.7 | rand | 2 | 12 | linear | 50 | 1.892262 | 81.976547 |
3 | fivenodes | STGCN | 0.7 | rand | 2 | 12 | nearest | 50 | 2.211288 | 87.803869 |
4 | fivenodes | STGCN | 0.8 | rand | 2 | 12 | linear | 50 | 2.072818 | 103.648742 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
565 | monte | IT-STGCN | 0.7 | rand | 4 | 12 | nearest | 50 | 1.015357 | 607.449036 |
566 | monte | STGCN | 0.7 | rand | 4 | 12 | nearest | 50 | 1.373984 | 345.047135 |
567 | monte | IT-STGCN | 0.7 | rand | 4 | 12 | nearest | 50 | 1.035471 | 677.290204 |
568 | monte | STGCN | 0.7 | rand | 4 | 12 | nearest | 50 | 1.409659 | 636.906142 |
569 | monte | IT-STGCN | 0.7 | rand | 4 | 12 | nearest | 50 | 1.001905 | 654.312819 |
3186 rows × 10 columns
'./simulation_results/Real_simulation_reshape/Final_Simulation_GConvGRU.csv',index=False) data.to_csv(
= pd.concat([data_pedal2,data_wiki_GSO]) pedal_wiki_GSO
'./simulation_results/Real_simulation_reshape/Final_Simulation_GConvGRU_pedal_wiki_GSO.csv',index=False) pedal_wiki_GSO.to_csv(
Fivenodes
Baseline
"dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|
0 | 12 | IT-STGCN | 2 | 0.732 | 0.005 |
1 | 12 | STGCN | 2 | 0.732 | 0.005 |
Random
"dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==12") on
mrate | nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 12 | IT-STGCN | 2 | 1.186 | 0.051 |
1 | 0.3 | 12 | STGCN | 2 | 1.208 | 0.051 |
2 | 0.5 | 12 | IT-STGCN | 2 | 1.242 | 0.061 |
3 | 0.5 | 12 | STGCN | 2 | 1.330 | 0.073 |
4 | 0.6 | 12 | IT-STGCN | 2 | 1.251 | 0.055 |
5 | 0.6 | 12 | STGCN | 2 | 1.422 | 0.086 |
6 | 0.7 | 12 | IT-STGCN | 2 | 1.167 | 0.059 |
7 | 0.7 | 12 | STGCN | 2 | 2.077 | 0.252 |
8 | 0.8 | 12 | IT-STGCN | 2 | 1.371 | 0.097 |
9 | 0.8 | 12 | STGCN | 2 | 2.432 | 0.263 |
Block
"dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 0.125 | 12 | IT-STGCN | 1.160 | 0.042 |
1 | 0.125 | 12 | STGCN | 1.215 | 0.036 |
ChickenpoxDatasetLoader(lags=4)
Baseline
"dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==16") on
nof_filters | method | mean | std | |
---|---|---|---|---|
0 | 16 | IT-STGCN | 0.752 | 0.013 |
1 | 16 | STGCN | 0.752 | 0.012 |
Random
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | linear | 16 | IT-STGCN | 0.851 | 0.031 |
1 | 0.3 | linear | 16 | STGCN | 1.087 | 0.046 |
2 | 0.5 | linear | 16 | IT-STGCN | 0.958 | 0.072 |
3 | 0.5 | linear | 16 | STGCN | 1.530 | 0.106 |
4 | 0.6 | linear | 16 | IT-STGCN | 1.120 | 0.072 |
5 | 0.6 | linear | 16 | STGCN | 1.753 | 0.181 |
6 | 0.8 | linear | 16 | IT-STGCN | 1.586 | 0.199 |
7 | 0.8 | linear | 16 | STGCN | 2.529 | 0.292 |
Block
"dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
inter_method | mrate | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | linear | 0.28777 | 16 | IT-STGCN | 0.807041 | 0.016362 |
1 | linear | 0.28777 | 16 | STGCN | 0.828224 | 0.021919 |
2 | nearest | 0.28777 | 16 | IT-STGCN | 0.823756 | 0.022918 |
3 | nearest | 0.28777 | 16 | STGCN | 0.828498 | 0.022007 |
PedalMeDatasetLoader (lags=4)
Baseline
"dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','lags','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
lags | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 4 | 12 | IT-STGCN | 1.233 | 0.115 |
1 | 4 | 12 | STGCN | 1.233 | 0.099 |
Random
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | linear | IT-STGCN | 1.354 | 0.134 |
1 | 0.3 | 4 | linear | STGCN | 1.575 | 0.198 |
2 | 0.3 | 4 | nearest | IT-STGCN | 1.385 | 0.173 |
3 | 0.3 | 4 | nearest | STGCN | 1.527 | 0.342 |
4 | 0.5 | 4 | linear | IT-STGCN | 1.528 | 0.190 |
5 | 0.5 | 4 | linear | STGCN | 1.593 | 0.195 |
6 | 0.5 | 4 | nearest | IT-STGCN | 1.507 | 0.235 |
7 | 0.5 | 4 | nearest | STGCN | 1.673 | 0.223 |
8 | 0.6 | 4 | linear | IT-STGCN | 1.516 | 0.211 |
9 | 0.6 | 4 | linear | STGCN | 1.655 | 0.179 |
10 | 0.6 | 4 | nearest | IT-STGCN | 1.625 | 0.324 |
11 | 0.6 | 4 | nearest | STGCN | 1.851 | 0.254 |
12 | 0.8 | 4 | linear | IT-STGCN | 1.753 | 0.306 |
13 | 0.8 | 4 | linear | STGCN | 1.753 | 0.148 |
14 | 0.8 | 4 | nearest | IT-STGCN | 1.608 | 0.243 |
15 | 0.8 | 4 | nearest | STGCN | 1.871 | 0.214 |
Block
"dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.286 | 4 | linear | IT-STGCN | 1.329 | 0.131 |
1 | 0.286 | 4 | linear | STGCN | 1.320 | 0.111 |
2 | 0.286 | 4 | nearest | IT-STGCN | 1.289 | 0.115 |
3 | 0.286 | 4 | nearest | STGCN | 1.270 | 0.114 |
W_st
"mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_pedal2.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_pedal2.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | linear | IT-STGCN | 1.270 | 0.163 |
1 | 0.3 | 4 | linear | STGCN | 1.556 | 0.264 |
2 | 0.3 | 4 | nearest | IT-STGCN | 1.324 | 0.163 |
3 | 0.3 | 4 | nearest | STGCN | 1.520 | 0.206 |
4 | 0.6 | 4 | linear | IT-STGCN | 1.434 | 0.222 |
5 | 0.6 | 4 | linear | STGCN | 1.678 | 0.211 |
6 | 0.6 | 4 | nearest | IT-STGCN | 1.410 | 0.208 |
7 | 0.6 | 4 | nearest | STGCN | 1.771 | 0.220 |
"mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_pedal2.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_pedal2.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.286 | 4 | linear | IT-STGCN | 1.391 | 0.151 |
1 | 0.286 | 4 | linear | STGCN | 1.420 | 0.110 |
2 | 0.286 | 4 | nearest | IT-STGCN | 1.361 | 0.114 |
3 | 0.286 | 4 | nearest | STGCN | 1.430 | 0.145 |
WikiMathsDatasetLoader (lags=8)
Baseline
"dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['lags','nof_filters','method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 8 | 12 | IT-STGCN | 0.529 | 0.003 |
1 | 8 | 12 | STGCN | 0.528 | 0.003 |
Random
"dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.3 | 8 | IT-STGCN | 0.518 | 0.002 |
1 | 0.3 | 8 | STGCN | 0.570 | 0.006 |
2 | 0.5 | 8 | IT-STGCN | 0.524 | 0.003 |
3 | 0.5 | 8 | STGCN | 0.658 | 0.010 |
4 | 0.6 | 8 | IT-STGCN | 0.539 | 0.004 |
5 | 0.6 | 8 | STGCN | 0.731 | 0.015 |
6 | 0.8 | 8 | IT-STGCN | 0.687 | 0.021 |
7 | 0.8 | 8 | STGCN | 0.932 | 0.043 |
Block
"dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.003835 | 8 | IT-STGCN | 0.528737 | 0.002806 |
1 | 0.003835 | 8 | STGCN | 0.527871 | 0.002606 |
2 | 0.095870 | 8 | IT-STGCN | 0.529440 | 0.003820 |
3 | 0.095870 | 8 | STGCN | 0.544176 | 0.010772 |
4 | 0.119837 | 8 | IT-STGCN | 0.522825 | 0.002422 |
5 | 0.119837 | 8 | STGCN | 0.531188 | 0.002295 |
missing values on the same nodes
'mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data_wiki_GSO.groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data_wiki_GSO.groupby([=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.512 | 8 | IT-STGCN | 0.533 | 0.003 |
1 | 0.512 | 8 | STGCN | 0.726 | 0.015 |
WindmillOutputSmallDatasetLoader (lags=8)
Baseline
"dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
data.query(=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | method | mean | std | |
---|---|---|---|---|
0 | 8 | IT-STGCN | 1.004 | 0.004 |
1 | 8 | STGCN | 1.003 | 0.004 |
Random
"dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.7 | 8 | IT-STGCN | 1.194 | 0.042 |
1 | 0.7 | 8 | STGCN | 1.662 | 0.073 |
"dataset=='windmillsmall' and mtype=='rand' and mrate==0.7 and method == 'STGCN'").sort_values('mse')[:5] data.query(
dataset | method | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | calculation_time | |
---|---|---|---|---|---|---|---|---|---|---|
20 | windmillsmall | STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.491985 | 4189.720611 |
24 | windmillsmall | STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.526696 | 4184.767751 |
96 | windmillsmall | STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.548946 | 4182.209651 |
82 | windmillsmall | STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.574623 | 3112.238717 |
108 | windmillsmall | STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.577491 | 4354.155174 |
"dataset=='windmillsmall' and mtype=='rand' and mrate==0.7 and method != 'STGCN'").sort_values('mse')[:5] data.query(
dataset | method | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | calculation_time | |
---|---|---|---|---|---|---|---|---|---|---|
35 | windmillsmall | IT-STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.118357 | 25106.537400 |
13 | windmillsmall | IT-STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.133768 | 33006.879024 |
109 | windmillsmall | IT-STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.134867 | 43213.207462 |
105 | windmillsmall | IT-STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.148162 | 39068.090318 |
91 | windmillsmall | IT-STGCN | 0.7 | rand | 8 | 12 | linear | 50 | 1.155443 | 37083.352598 |
Block
"dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.081 | 8 | IT-STGCN | 1.007 | 0.005 |
1 | 0.081 | 8 | STGCN | 1.008 | 0.006 |
Montevideobus (lags=4)
Baseline
"dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
data.query(=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | method | mean | std | |
---|---|---|---|---|
0 | 4 | IT-STGCN | 0.931 | 0.001 |
1 | 4 | STGCN | 0.931 | 0.002 |
Random
"dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['mrate','inter_method','method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | nearest | IT-STGCN | 0.936185 | 0.001825 |
1 | 0.3 | 4 | nearest | STGCN | 0.991390 | 0.007285 |
2 | 0.5 | 4 | nearest | IT-STGCN | 0.942045 | 0.002642 |
3 | 0.5 | 4 | nearest | STGCN | 1.149221 | 0.017820 |
4 | 0.7 | 4 | nearest | IT-STGCN | 1.015221 | 0.012403 |
5 | 0.7 | 4 | nearest | STGCN | 1.393108 | 0.027555 |
6 | 0.8 | 4 | nearest | IT-STGCN | 1.095560 | 0.018743 |
7 | 0.8 | 4 | nearest | STGCN | 1.516000 | 0.039793 |
Block
"dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','inter_method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.149142 | 4 | cubic | IT-STGCN | 1.022866 | 0.021048 |
1 | 0.149142 | 4 | cubic | STGCN | 1.028363 | 0.031275 |
2 | 0.149142 | 4 | linear | IT-STGCN | 0.930156 | 0.001956 |
3 | 0.149142 | 4 | linear | STGCN | 0.934719 | 0.004724 |
4 | 0.149142 | 4 | nearest | IT-STGCN | 0.931785 | 0.002158 |
5 | 0.149142 | 4 | nearest | STGCN | 0.934596 | 0.003562 |
GNAR
= pd.read_csv('./simulation_results/2023-07-09_10-06-15.csv') # STGCN IT-STGCN 70%
df1 = pd.read_csv('./simulation_results/2023-07-09_10-06-19.csv') # STGCN IT-STGCN
df2 = pd.read_csv('./simulation_results/2023-07-09_10-06-20.csv') # STGCN IT-STGCN
df3 = pd.read_csv('./simulation_results/2023-07-09_11-24-16.csv') # STGCN IT-STGCN
df4 = pd.read_csv('./simulation_results/2023-07-09_11-26-12.csv') # STGCN IT-STGCN
df5 = pd.read_csv('./simulation_results/2023-07-09_11-26-13.csv') # GNAR 30%, 50%, 70% # 뭔가 일단 필요없어서 데이터셋에서 뺌
df6 = pd.read_csv('./simulation_results/2023-07-09_11-26-14.csv') # STGCN IT-STGCN
df7 = pd.read_csv('./simulation_results/2023-07-09_11-26-15.csv') # STGCN IT-STGCN
df8 = pd.read_csv('./simulation_results/2023-07-09_11-52-36.csv') # STGCN IT-STGCN
df9 = pd.read_csv('./simulation_results/2023-07-09_11-53-31.csv') # STGCN IT-STGCN
df10 = pd.read_csv('./simulation_results/2023-07-09_11-54-04.csv') # STGCN IT-STGCN
df11 = pd.read_csv('./simulation_results/2023-07-09_11-55-04.csv') # STGCN IT-STGCN df12
= pd.read_csv('./simulation_results/2023-07-16_08-11-09.csv') # STGCN IT-STGCN
df13 = pd.read_csv('./simulation_results/2023-07-16_08-11-11.csv') # STGCN IT-STGCN
df14 = pd.read_csv('./simulation_results/2023-07-16_08-11-13.csv') # STGCN IT-STGCN
df15 # df16 = pd.read_csv('./simulation_results/2023-07-09_11-53-31.csv') # STGCN IT-STGCN
# df17 = pd.read_csv('./simulation_results/2023-07-09_11-53-31.csv') # STGCN IT-STGCN
= pd.concat([df1,df2,df3,df4,df5,df6,df7,df8,df9,df10,df11,df12,df13,df14,df15],axis=0) data
'./simulation_results/Real_simulation_reshape/Final_Simulation_GNAR.csv',index=False) data.to_csv(
= pd.read_csv('./simulation_results/Real_simulation_reshape/Final_Simulation_GNAR.csv') data
data
dataset | method | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | calculation_time | |
---|---|---|---|---|---|---|---|---|---|---|
0 | fivenodes | GNAR | 0.0 | NaN | 2 | NaN | NaN | NaN | 1.406830 | 0.021981 |
1 | fivenodes | GNAR | 0.0 | NaN | 2 | NaN | NaN | NaN | 1.406830 | 0.017151 |
2 | fivenodes | GNAR | 0.7 | rand | 2 | NaN | linear | NaN | 1.406830 | 0.084960 |
3 | fivenodes | GNAR | 0.7 | rand | 2 | NaN | nearest | NaN | 1.406830 | 0.010853 |
4 | fivenodes | GNAR | 0.8 | rand | 2 | NaN | linear | NaN | 1.406830 | 0.012061 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
286 | pedalme | GNAR | 0.8 | rand | 4 | NaN | nearest | NaN | 1.302679 | 0.023105 |
287 | pedalme | GNAR | 0.5 | rand | 4 | NaN | linear | NaN | 1.302679 | 0.022839 |
288 | pedalme | GNAR | 0.5 | rand | 4 | NaN | nearest | NaN | 1.302679 | 0.023041 |
289 | pedalme | GNAR | 0.8 | rand | 4 | NaN | linear | NaN | 1.302679 | 0.060872 |
290 | pedalme | GNAR | 0.8 | rand | 4 | NaN | nearest | NaN | 1.302679 | 0.023526 |
291 rows × 10 columns
= pd.read_csv('./simulation_results/2023-07-09_22-21-58.csv') data
= pd.concat([data]) pedal_wiki_GSO
'./simulation_results/Real_simulation_reshape/Final_Simulation_GNAR_wiki_GSO.csv',index=False) pedal_wiki_GSO.to_csv(