import pandas as pd
GConvGRU_Simulation Tables_reshape
ITSTGCN
Simulation Tables
import
= pd.read_csv('./simulation_results/Real_simulation_reshape/fivedones_Simulation.csv') data_fivenodes
= pd.read_csv('./simulation_results/Real_simulation_reshape/chikenpox_Simulation.csv') data_chickenpox
= pd.read_csv('./simulation_results/Real_simulation_reshape/pedalme_Simulation.csv') data_pedal
= pd.read_csv('./simulation_results/Real_simulation_reshape/pedalme_Simulation_itstgcnsnd.csv') data_pedal2
= pd.read_csv('./simulation_results/Real_simulation_reshape/wikimath.csv') data__wiki
= pd.read_csv('./simulation_results/Real_simulation_reshape/wikimath_GSO_st.csv') data_wiki_GSO
= pd.read_csv('./simulation_results/Real_simulation_reshape/windmillsmall.csv') data_windmillsmall
= pd.read_csv('./simulation_results/Real_simulation_reshape/monte.csv') data_monte
= pd.concat([data_fivenodes,data_chickenpox,data_pedal,data__wiki,data_windmillsmall,data_monte]);data data
dataset | method | mrate | mtype | lags | nof_filters | inter_method | epoch | mse | calculation_time | |
---|---|---|---|---|---|---|---|---|---|---|
0 | fivenodes | STGCN | 0.000000 | NaN | 2 | 12 | NaN | 50 | 0.729374 | 80.985221 |
1 | fivenodes | STGCN | 0.000000 | NaN | 2 | 12 | NaN | 50 | 0.729082 | 80.891788 |
2 | fivenodes | STGCN | 0.700000 | rand | 2 | 12 | linear | 50 | 1.892262 | 81.976547 |
3 | fivenodes | STGCN | 0.700000 | rand | 2 | 12 | nearest | 50 | 2.211288 | 87.803869 |
4 | fivenodes | STGCN | 0.800000 | rand | 2 | 12 | linear | 50 | 2.072818 | 103.648742 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
385 | monte | IT-STGCN | 0.149142 | block | 4 | 12 | nearest | 50 | 0.932036 | 472.003806 |
386 | monte | STGCN | 0.149142 | block | 4 | 12 | nearest | 50 | 0.936046 | 384.706071 |
387 | monte | IT-STGCN | 0.149142 | block | 4 | 12 | nearest | 50 | 0.933899 | 449.077441 |
388 | monte | STGCN | 0.149142 | block | 4 | 12 | nearest | 50 | 0.933985 | 332.606736 |
389 | monte | IT-STGCN | 0.149142 | block | 4 | 12 | nearest | 50 | 0.931460 | 476.834988 |
2034 rows × 10 columns
Fivenodes
Baseline
"dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|
0 | 12 | IT-STGCN | 2 | 0.732 | 0.005 |
1 | 12 | STGCN | 2 | 0.732 | 0.005 |
Random
"dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='rand'").groupby(['mrate','nof_filters','method','lags'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==12") on
mrate | nof_filters | method | lags | mean | std | |
---|---|---|---|---|---|---|
0 | 0.7 | 12 | IT-STGCN | 2 | 1.167 | 0.059 |
1 | 0.7 | 12 | STGCN | 2 | 2.077 | 0.252 |
2 | 0.8 | 12 | IT-STGCN | 2 | 1.371 | 0.097 |
3 | 0.8 | 12 | STGCN | 2 | 2.432 | 0.263 |
Block
"dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='fivenodes' and mtype=='block'").groupby(['mrate','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','nof_filters','mrate']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 0.125 | 12 | IT-STGCN | 1.160 | 0.042 |
1 | 0.125 | 12 | STGCN | 1.215 | 0.036 |
ChickenpoxDatasetLoader(lags=4)
Baseline
"dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype!='rand' and mtype!='block'").groupby(['nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("nof_filters==16") on
nof_filters | method | mean | std | |
---|---|---|---|---|
0 | 16 | IT-STGCN | 0.752 | 0.013 |
1 | 16 | STGCN | 0.752 | 0.012 |
Random
"dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='rand'").groupby(['mrate','inter_method','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | inter_method | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | linear | 16 | IT-STGCN | 0.851 | 0.031 |
1 | 0.3 | linear | 16 | STGCN | 1.087 | 0.046 |
2 | 0.8 | linear | 16 | IT-STGCN | 1.586 | 0.199 |
3 | 0.8 | linear | 16 | STGCN | 2.529 | 0.292 |
Block
"dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='chickenpox' and mtype=='block'").groupby(['inter_method','mrate','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','inter_method','mrate','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
inter_method | mrate | nof_filters | method | mean | std | |
---|---|---|---|---|---|---|
0 | linear | 0.28777 | 16 | IT-STGCN | 0.807041 | 0.016362 |
1 | linear | 0.28777 | 16 | STGCN | 0.828224 | 0.021919 |
2 | nearest | 0.28777 | 16 | IT-STGCN | 0.823756 | 0.022918 |
3 | nearest | 0.28777 | 16 | STGCN | 0.828498 | 0.022007 |
PedalMeDatasetLoader (lags=4)
Baseline
"dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype!='rand' and mtype!='block'").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['method','lags','nof_filters']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
lags | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 4 | 12 | IT-STGCN | 1.233 | 0.115 |
1 | 4 | 12 | STGCN | 1.233 | 0.099 |
Random
"dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | linear | IT-STGCN | 1.354 | 0.134 |
1 | 0.3 | 4 | linear | STGCN | 1.575 | 0.198 |
2 | 0.3 | 4 | nearest | IT-STGCN | 1.385 | 0.173 |
3 | 0.3 | 4 | nearest | STGCN | 1.527 | 0.342 |
4 | 0.6 | 4 | linear | IT-STGCN | 1.516 | 0.211 |
5 | 0.6 | 4 | linear | STGCN | 1.655 | 0.179 |
6 | 0.6 | 4 | nearest | IT-STGCN | 1.625 | 0.324 |
7 | 0.6 | 4 | nearest | STGCN | 1.851 | 0.254 |
Block
"dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='pedalme' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.286 | 4 | linear | IT-STGCN | 1.329 | 0.131 |
1 | 0.286 | 4 | linear | STGCN | 1.320 | 0.111 |
2 | 0.286 | 4 | nearest | IT-STGCN | 1.289 | 0.115 |
3 | 0.286 | 4 | nearest | STGCN | 1.270 | 0.114 |
W_st
"mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_pedal2.query("mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_pedal2.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.3 | 4 | linear | IT-STGCN | 1.270 | 0.163 |
1 | 0.3 | 4 | linear | STGCN | 1.556 | 0.264 |
2 | 0.3 | 4 | nearest | IT-STGCN | 1.324 | 0.163 |
3 | 0.3 | 4 | nearest | STGCN | 1.520 | 0.206 |
4 | 0.6 | 4 | linear | IT-STGCN | 1.434 | 0.222 |
5 | 0.6 | 4 | linear | STGCN | 1.678 | 0.211 |
6 | 0.6 | 4 | nearest | IT-STGCN | 1.410 | 0.208 |
7 | 0.6 | 4 | nearest | STGCN | 1.771 | 0.220 |
"mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data_pedal2.query("mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data_pedal2.query(=['method','mrate','lags','inter_method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3).query("lags==4") on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.286 | 4 | linear | IT-STGCN | 1.391 | 0.151 |
1 | 0.286 | 4 | linear | STGCN | 1.420 | 0.110 |
2 | 0.286 | 4 | nearest | IT-STGCN | 1.361 | 0.114 |
3 | 0.286 | 4 | nearest | STGCN | 1.430 | 0.145 |
WikiMathsDatasetLoader (lags=8)
Baseline
"dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mrate==0").groupby(['lags','nof_filters','method'])['mse'].std().reset_index(),
data.query(=['lags','nof_filters','method']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | nof_filters | method | mean | std | |
---|---|---|---|---|---|
0 | 8 | 12 | IT-STGCN | 0.529 | 0.003 |
1 | 8 | 12 | STGCN | 0.528 | 0.003 |
Random
"dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.3 | 8 | IT-STGCN | 0.518 | 0.002 |
1 | 0.3 | 8 | STGCN | 0.570 | 0.006 |
2 | 0.8 | 8 | IT-STGCN | 0.687 | 0.021 |
3 | 0.8 | 8 | STGCN | 0.932 | 0.043 |
Block
"dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='wikimath' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.003835 | 8 | IT-STGCN | 0.528737 | 0.002806 |
1 | 0.003835 | 8 | STGCN | 0.527871 | 0.002606 |
2 | 0.095870 | 8 | IT-STGCN | 0.529440 | 0.003820 |
3 | 0.095870 | 8 | STGCN | 0.544176 | 0.010772 |
missing values on the same nodes
'mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data_wiki_GSO.groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data_wiki_GSO.groupby([=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.512 | 8 | IT-STGCN | 0.531 | 0.002 |
1 | 0.512 | 8 | STGCN | 0.720 | 0.013 |
WindmillOutputSmallDatasetLoader (lags=8)
Baseline
"dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
data.query(=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | method | mean | std | |
---|---|---|---|---|
0 | 8 | IT-STGCN | 1.004 | 0.004 |
1 | 8 | STGCN | 1.003 | 0.004 |
Random
"dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mtype=='rand'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mrate | lags | method | mean | std | |
---|---|---|---|---|---|
0 | 0.7 | 8 | IT-STGCN | 1.193 | 0.045 |
1 | 0.7 | 8 | STGCN | 1.661 | 0.076 |
Block
"dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='windmillsmall' and mtype=='block'").groupby(['mrate','lags','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
mean | mrate | lags | method | std |
---|
Montevideobus (lags=4)
Baseline
"dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mrate==0").groupby(['lags','method'])['mse'].std().reset_index(),
data.query(=['method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}).round(3) on
lags | method | mean | std | |
---|---|---|---|---|
0 | 4 | IT-STGCN | 0.931 | 0.001 |
1 | 4 | STGCN | 0.931 | 0.002 |
Random
"dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mtype=='rand'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['mrate','inter_method','method','mrate','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.8 | 4 | nearest | IT-STGCN | 1.09556 | 0.018743 |
1 | 0.8 | 4 | nearest | STGCN | 1.51600 | 0.039793 |
Block
"dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].mean().reset_index(),
pd.merge(data.query("dataset=='monte' and mtype=='block'").groupby(['mrate','lags','inter_method','method'])['mse'].std().reset_index(),
data.query(=['method','mrate','inter_method','lags']).rename(columns={'mse_x':'mean','mse_y':'std'}) on
mrate | lags | inter_method | method | mean | std | |
---|---|---|---|---|---|---|
0 | 0.149142 | 4 | cubic | IT-STGCN | 1.022866 | 0.021048 |
1 | 0.149142 | 4 | cubic | STGCN | 1.028363 | 0.031275 |
2 | 0.149142 | 4 | linear | IT-STGCN | 0.930156 | 0.001956 |
3 | 0.149142 | 4 | linear | STGCN | 0.934719 | 0.004724 |
4 | 0.149142 | 4 | nearest | IT-STGCN | 0.931785 | 0.002158 |
5 | 0.149142 | 4 | nearest | STGCN | 0.934596 | 0.003562 |