Class of Method(WikiMath) lag 4

ST-GCN
Author

SEOYEON CHOI

Published

January 28, 2023

ST-GCN Dataset WikiMathsDatasetLoader

import

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import animation

# torch
import torch
import torch.nn.functional as F
from torch_geometric_temporal.nn.recurrent import GConvGRU

# scipy 
from scipy.interpolate import interp1d

# utils
import time
import pickle
from tqdm import tqdm

# rpy2
import rpy2
import rpy2.robjects as ro 
from rpy2.robjects.vectors import FloatVector 
from rpy2.robjects.packages import importr

import copy
class RecurrentGCN(torch.nn.Module):
    def __init__(self, node_features, filters):
        super(RecurrentGCN, self).__init__()
        self.recurrent = GConvGRU(node_features, filters, 2)
        self.linear = torch.nn.Linear(filters, 1)

    def forward(self, x, edge_index, edge_weight):
        h = self.recurrent(x, edge_index, edge_weight)
        h = F.relu(h)
        h = self.linear(h)
        return h

my functions

def load_data(fname):
    with open(fname, 'rb') as outfile:
        data_dict = pickle.load(outfile)
    return data_dict
def save_data(data_dict,fname):
    with open(fname,'wb') as outfile:
        pickle.dump(data_dict,outfile)
def plot(f,*args,t=None,h=2.5,**kwargs):
    T,N = f.shape
    if t == None: t = range(T)
    fig = plt.figure()
    ax = fig.subplots(N,1)
    for n in range(N):
        ax[n].plot(t,f[:,n],*args,**kwargs)
        ax[n].set_title('node='+str(n))
    fig.set_figheight(N*h)
    fig.tight_layout()
    plt.close()
    return fig
def plot_add(fig,f,*args,t=None,**kwargs):
    T = f.shape[0]
    N = f.shape[1] 
    if t == None: t = range(T)   
    ax = fig.get_axes()
    for n in range(N):
        ax[n].plot(t,f[:,n],*args,**kwargs)
    return fig
def make_Psi(T):
    W = np.zeros((T,T))
    for i in range(T):
        for j in range(T):
            if i==j :
                W[i,j] = 0
            elif np.abs(i-j) <= 1 : 
                W[i,j] = 1
    d = np.array(W.sum(axis=1))
    D = np.diag(d)
    L = np.array(np.diag(1/np.sqrt(d)) @ (D-W) @ np.diag(1/np.sqrt(d)))
    lamb, Psi = np.linalg.eigh(L)
    return Psi
ebayesthresh = importr('EbayesThresh').ebayesthresh
def trim(f):
    f = np.array(f)
    if len(f.shape)==1: f = f.reshape(-1,1)
    T,N = f.shape
    Psi = make_Psi(T)
    fbar = Psi.T @ f # apply dft 
    fbar_threshed = np.stack([ebayesthresh(FloatVector(fbar[:,i])) for i in range(N)],axis=1)
    fhat = Psi @ fbar_threshed # inverse dft 
    return fhat
def update_from_freq_domain(signal, missing_index):
    signal = np.array(signal)
    T,N = signal.shape 
    signal_trimed = trim(signal)
    for i in range(N):
        signal[missing_index[i],i] = signal_trimed[missing_index[i],i]
    return signal

Data

from torch_geometric_temporal.dataset import WikiMathsDatasetLoader
from torch_geometric_temporal.signal import temporal_signal_split
loader = WikiMathsDatasetLoader()
dataset = loader.get_dataset(lags=4)
train_dataset, test_dataset = temporal_signal_split(dataset, train_ratio=0.8)

Train

data_train=[]
for time, snapshot in enumerate(train_dataset):
    data_train.append([time,snapshot])
data_train[0][1].x.shape,data_train[0][1].y.shape,data_train[0][1].edge_index.shape,data_train[0][1].edge_attr.shape
(torch.Size([1068, 4]),
 torch.Size([1068]),
 torch.Size([2, 27079]),
 torch.Size([27079]))
time
580
T_train = time
N = len(data_train[0][1].x)
edge_index = data_train[0][1].edge_index
edge_attr = data_train[0][1].edge_attr
x_train = []
for i in range(time):
    x_train.append(data_train[i][1].x)
data_tensor = torch.Tensor()
# Iterate over the data points of the dataset
for i in x_train:
    # Concatenate the data point to the tensor
    data_tensor = torch.cat((data_tensor, i), dim=0)
x_train = data_tensor.reshape(time,1068,-1)
x_train.shape
torch.Size([580, 1068, 4])
y_train = []
for i in range(time):
    y_train.append(data_train[i][1].y)
data_tensor = torch.Tensor()
# Iterate over the data points of the dataset
for i in y_train:
    # Concatenate the data point to the tensor
    data_tensor = torch.cat((data_tensor, i), dim=0)
y_train = data_tensor.reshape(time,1068)
y_train.shape
torch.Size([580, 1068])
x_train.shape, y_train.shape
(torch.Size([580, 1068, 4]), torch.Size([580, 1068]))

Test

data_test=[]
for time, snapshot in enumerate(test_dataset):
    data_test.append([time,snapshot])
data_test[0][1].x.shape,data_test[0][1].y.shape,data_test[0][1].edge_index.shape,data_test[0][1].edge_attr.shape
(torch.Size([1068, 4]),
 torch.Size([1068]),
 torch.Size([2, 27079]),
 torch.Size([27079]))
time
145
T_test = time
x_test = []
for i in range(time):
    x_test.append(data_test[i][1].x)
data_tensor = torch.Tensor()
# Iterate over the data points of the dataset
for i in x_test:
    # Concatenate the data point to the tensor
    data_tensor = torch.cat((data_tensor, i), dim=0)
x_test = data_tensor.reshape(time,1068,-1)
x_test.shape
torch.Size([145, 1068, 4])
y_test = []
for i in range(time):
    y_test.append(data_test[i][1].y)
data_tensor = torch.Tensor()
# Iterate over the data points of the dataset
for i in y_test:
    # Concatenate the data point to the tensor
    data_tensor = torch.cat((data_tensor, i), dim=0)
y_test = data_tensor.reshape(time,1068)
y_test.shape
torch.Size([145, 1068])
x_test.shape, y_test.shape
(torch.Size([145, 1068, 4]), torch.Size([145, 1068]))

data 정리

- 데이터정리

T_test,T_train,N
(145, 580, 1068)
E = edge_index;E
tensor([[   0,    0,    0,  ..., 1056, 1063, 1065],
        [   1,    2,    3,  ..., 1059, 1064, 1066]])
edge_index = E
edge_attr
tensor([1., 4., 2.,  ..., 1., 1., 2.])

- train / test

x_train.shape,y_train.shape,x_test.shape,y_test.shape,edge_index.shape,edge_attr.shape
(torch.Size([580, 1068, 4]),
 torch.Size([580, 1068]),
 torch.Size([145, 1068, 4]),
 torch.Size([145, 1068]),
 torch.Size([2, 27079]),
 torch.Size([27079]))
fig = plot(y_train[:,:5],'--o',label='train',color='C0')
fig = plot_add(fig,y_test[:,:5],'--o',label='test',color='C1',t=range(581,726))
ax = fig.get_axes()
for a in ax:
    a.legend()
fig.set_figwidth(10)
fig

Random Missing Values

class Missing:
    def __init__(self,df):
        self.df = df
        self.N = N
        self.number = []
    def miss(self,percent=0.5):
        self.missing = copy.deepcopy(self.df)
        self.percent = percent
        for i in range(self.N):
            #self.seed = np.random.choice(1000,1,replace=False)
            #np.random.seed(self.seed)
            self.number.append(np.random.choice(int(len(self.df))-10,int(len(self.df)*self.percent),replace=False))
            self.missing[self.number[i],i] = float('nan')
    def first_mean(self):
        self.train_mean = np.array(copy.deepcopy(self.missing))
        for i in range(self.N):
            self.train_mean[self.number[i],i] = np.nanmean(self.missing[:,i])
    def second_linear(self):
        self.train_linear = pd.DataFrame(self.missing.tolist())
        self.train_linear.interpolate(method='linear', inplace=True)
        self.train_linear = self.train_linear.fillna(0)
        self.train_linear = np.array(self.train_linear).reshape(int(len(self.df)),N)

- 30% 결측치 발생

x_train_f = torch.concat([x_train[:-1,:,0], x_train[-1,:,:].T])
x_test_f = torch.concat([x_test[:-1,:,0], x_train[-1,:,:].T])
_zero = Missing(x_train_f)
_zero.miss(percent = 0.3)
fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.plot(_zero.missing[:,i],'o',color='C0',label='observed')
    a.plot(_zero.number[i],x_train_f[_zero.number[i],i],'x',color='C1',label='missing')
    a.legend()
fig.set_figwidth(10)    
fig

- 결측치를 평균으로 보간

_zero.first_mean()
fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.plot(_zero.missing[:,i],'o',color='C0',label='observed')
    a.plot(_zero.number[i],x_train_f[:,:][_zero.number[i],i],'x',color='C1',label='missing')
    a.plot(_zero.train_mean[:,i],'-',color='red',label='padding mean')
    a.legend()
fig.set_figwidth(15)
fig

- 결측치를 linear interpolation

_zero.second_linear()


fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.plot(_zero.missing[:,i],'o',color='C0',label='observed')
    a.plot(_zero.number[i],x_train_f[:,:][_zero.number[i],i],'x',color='C1',label='missing')
    a.plot(_zero.train_linear[:,i],'-',color='red',label='linear interpolation')
    a.legend()
fig.set_figwidth(15)
fig

Enhencement of STGCN

시나리오1 (Baseline)

시나리오1

  • missing rate: 0%
  • 보간방법: None

STGCN 으로 적합 + 예측

X = torch.tensor(np.stack([x_train_f[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = x_train_f[4:T_train,:].reshape(T_train-4,N,-1).float()
XX = x_test
yy = y_test
net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
for epoch in tqdm(range(50)):
    for time, (xt,yt) in enumerate(zip(X,y)):
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
100%|██████████| 50/50 [05:47<00:00,  6.96s/it]
yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
stgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
stgcn_test = yyhat.squeeze() 
train_mse_eachnode_stgcn = (((y.squeeze()-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_stgcn = (((y.squeeze()-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()

GNAR 으로 적합 + 예측

-

%load_ext rpy2.ipython
%%R
library(GNAR)
library(igraph)
R[write to console]: Loading required package: igraph

R[write to console]: 
Attaching package: ‘igraph’


R[write to console]: The following objects are masked from ‘package:stats’:

    decompose, spectrum


R[write to console]: The following object is masked from ‘package:base’:

    union


R[write to console]: Loading required package: wordcloud

R[write to console]: Loading required package: RColorBrewer
Edge = np.array(edge_index)
X_gnar = np.array(x_train_f)
w=np.zeros((1068,1068))
for k in range(27079):
    w[edge_index[0][k],edge_index[1][k]] = 1
%R -i X_gnar
%R -i w
%R -i T_test
%%R
wikiNet <- matrixtoGNAR(w)
%%R
answer <- GNARfit(vts = X_gnar, net = wikiNet, alphaOrder = 4, betaOrder = c(1,1,1,1))
prediction <- predict(answer,n.ahead=T_test)
%%R
gnar_train <- residuals(answer)
gnar_test <- prediction
%R -o gnar_train
%R -o gnar_test
train_mse_eachnode_gnar = (gnar_train**2).mean(axis=0)
train_mse_total_gnar = (gnar_train**2).mean()
test_mse_eachnode_gnar = ((yy-gnar_test)**2).mean(axis=0)
test_mse_total_gnar = ((yy-gnar_test)**2).mean()

결과시각화

fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,h=5)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.set_title('node{0} \n STGCN: mse(train) = {1:.2f}, mse(test) = {2:.2f} \n GNAR: mse(train) = {3:.2f}, mse(test) = {4:.2f}'.format(i,train_mse_eachnode_stgcn[i],test_mse_eachnode_stgcn[i],train_mse_eachnode_gnar[i],test_mse_eachnode_gnar[i]))
    a.plot(range(4,580),stgcn_train[:,i],label='STCGCN (train)',color='C0')
    a.plot(range(583,728),stgcn_test[:,i],label='STCGCN (test)',color='C0')
    a.plot(range(4,583),gnar_train[:,i],label='GNAR (train)',color='C1')
    a.plot(range(583,728),gnar_test[:,i],label='GNAR (test)',color='C1')
    a.legend()
fig.set_figwidth(14)
fig.suptitle("Scenario1: STGCN \n missing=0% \n interpolation=None \n\n STGCN: mse(train) = {0:.2f}, mse(test) = {1:.2f} \n GNAR: mse(train) = {2:.2f}, mse(test) = {3:.2f} \n".format(train_mse_total_stgcn,test_mse_total_stgcn,train_mse_total_gnar,test_mse_total_gnar),size=15)
fig.tight_layout()
fig

시나리오2

시나리오2

  • missing rate: 50%
  • 보간방법: linear

- 결측치생성 + 보간

_zero = Missing(x_train_f)
_zero.miss(percent = 0.5)
_zero.second_linear()
missing_index = _zero.number
interpolated_signal = _zero.train_linear
fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.plot(missing_index[i],x_train[:,:,0][:,i][missing_index[i]],'xk',label='missing')
    a.plot(interpolated_signal[:,i],'-',color='gray',label='linear interpolation')
    a.legend()
fig.set_figwidth(15)
fig

STGCN 으로 적합 + 예측

import numpy as np

T= 100
N= 5
lag =4 

signal=np.arange(T*N).reshape(T,N)

X= np.stack([signal[i:(T-lag+i),:] for i in range(lag)],axis=-1)
X.shape

y=signal[lag:].reshape(T-lag,N,1)
y.shape
X = torch.tensor(np.stack([interpolated_signal[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = torch.tensor(interpolated_signal[4:,:]).float()
XX = x_test
yy = y_test
net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
for epoch in tqdm(range(50)):
    for time, (xt,yt) in enumerate(zip(X,y)):
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
100%|██████████| 50/50 [06:23<00:00,  7.67s/it]
yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
real_y = y_train[4:,:]

train_mse_eachnode_stgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_stgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()
stgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
stgcn_test = yyhat.squeeze() 

ESTGCN 으로 적합 + 예측

X = torch.tensor(np.stack([interpolated_signal[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = torch.tensor(interpolated_signal[4:,:]).float()
XX = x_test
yy = y_test

- ESTGCN

net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
signal = interpolated_signal.copy()
for epoch in tqdm(range(50)):
    signal = update_from_freq_domain(signal,missing_index)
    X = torch.tensor(np.stack([signal[i:(T_train+i),:] for i in range(4)],axis = -1)).reshape(T_train,N,4).float()
    y = torch.tensor(signal).reshape(-1,N,1).float()[4:,:,:]
    for time, (xt,yt) in enumerate(zip(X,y)):        
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
    signal = torch.concat([X[:-1,:,0], X[-1,:,:].T, yt_hat.detach().reshape(1,-1)]).squeeze()
100%|██████████| 50/50 [07:11<00:00,  8.63s/it]

- ESTGCN

yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
y_train.shape,T_train
(torch.Size([580, 1068]), 580)
real_y = y_train

train_mse_eachnode_estgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_estgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_estgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_estgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()
estgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
estgcn_test = yyhat.squeeze() 

GNAR 으로 적합 + 예측

-

X_gnar = np.array(torch.concat([X[:-1,:,0], x_train[-1,:,:].T]))
Edge = np.array(edge_index)
w=np.zeros((1068,1068))
for k in range(27079):
    w[edge_index[0][k],edge_index[1][k]] = 1
%R -i X_gnar
%R -i w
%R -i T_test
%%R
wikiNet <- matrixtoGNAR(w)
%%R
answer <- GNARfit(vts = X_gnar, net = wikiNet, alphaOrder = 4, betaOrder = c(1,1,1,1))
prediction <- predict(answer,n.ahead=T_test)
%%R
gnar_train <- residuals(answer)
gnar_test <- prediction
%R -o gnar_train
%R -o gnar_test
train_mse_eachnode_gnar = (gnar_train**2).mean(axis=0)
train_mse_total_gnar = (gnar_train**2).mean()
test_mse_eachnode_gnar = ((y_test-gnar_test)**2).mean(axis=0)
test_mse_total_gnar = ((y_test-gnar_test)**2).mean()

결과시각화

fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,h=5)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.set_title('node{0} \n STGCN: mse(train) = {1:.2f}, mse(test) = {2:.2f} \n ESTGCN: mse(train) = {3:.2f}, mse(test) = {4:.2f}\n GNAR: mse(train) = {5:.2f}, mse(test) = {6:.2f}'.format(i,train_mse_eachnode_stgcn[i],test_mse_eachnode_stgcn[i],train_mse_eachnode_estgcn[i],test_mse_eachnode_estgcn[i],train_mse_eachnode_gnar[i],test_mse_eachnode_gnar[i]))
    a.plot(missing_index[i],x_train[missing_index[i],i,0],'xk',label='missing')
    a.plot(interpolated_signal[:,i],'-',color='gray',label='linear interpolation')
    a.plot(range(4,580),stgcn_train.squeeze()[:,i],'--.',label='STCGCN (train)',color='C0')
    a.plot(range(583,728),stgcn_test.squeeze()[:,i],'--.',label='STCGCN (test)',color='C0')
    a.plot(range(4,584),estgcn_train.squeeze()[:,i],label='ESTCGCN (train)',color='C1')
    a.plot(range(582,727),estgcn_test.squeeze()[:,i],label='ESTCGCN (test)',color='C1')
    a.plot(range(4,583),gnar_train.squeeze()[:,i],label='GNAR (train)',color='C2')
    a.plot(range(583,728),gnar_test.squeeze()[:,i],label='GNAR (test)',color='C2')
    
    a.legend()
fig.set_figwidth(14)
fig.suptitle("Scenario2: \n missing=50% \n interpolation=linear \n\n STGCN: mse(train) = {0:.2f}, mse(test) = {1:.2f} \n ESTGCN: mse(train) = {2:.2f}, mse(test) = {3:.2f} \n GNAR: mse(train) = {4:.2f}, mse(test) = {5:.2f} \n".format(train_mse_total_stgcn,test_mse_total_stgcn,train_mse_total_estgcn,test_mse_total_estgcn,train_mse_total_gnar,test_mse_total_gnar),size=15)
fig.tight_layout()
fig

시나리오3

시나리오3

  • missing rate: 80%
  • 보간방법: linear

- 결측치생성 + 보간

_zero = Missing(x_train_f)
_zero.miss(percent = 0.8)
_zero.second_linear()
missing_index = _zero.number
interpolated_signal = _zero.train_linear
fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,h=5)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.plot(missing_index[i],x_train_f[:,i][missing_index[i]],'xk',label='missing')
    a.plot(interpolated_signal[:,i],'-',color='gray',label='linear interpolation')
    a.legend()
fig.set_figwidth(15)
fig

STGCN 으로 적합 + 예측

X = torch.tensor(np.stack([interpolated_signal[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = torch.tensor(interpolated_signal[4:,:]).float()
XX = x_test
yy = y_test
net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
for epoch in tqdm(range(50)):
    for time, (xt,yt) in enumerate(zip(X,y)):
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
100%|██████████| 50/50 [06:40<00:00,  8.01s/it]
yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
real_y = y_train[4:,:]

train_mse_eachnode_stgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_stgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()
stgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
stgcn_test = yyhat.squeeze() 

ESTGCN 으로 적합 + 예측

X = torch.tensor(np.stack([interpolated_signal[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = torch.tensor(interpolated_signal[4:,:]).float()
XX = x_test
yy = y_test

- ESTGCN

net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
signal = interpolated_signal.copy()
for epoch in tqdm(range(50)):
    signal = update_from_freq_domain(signal,missing_index)
    X = torch.tensor(np.stack([signal[i:(T_train+i),:] for i in range(4)],axis = -1)).reshape(T_train,N,4).float()
    y = torch.tensor(signal).reshape(-1,N,1).float()[4:,:,:]
    for time, (xt,yt) in enumerate(zip(X,y)):        
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
    signal = torch.concat([X[:-1,:,0], X[-1,:,:].T, yt_hat.detach().reshape(1,-1)]).squeeze()
100%|██████████| 50/50 [07:18<00:00,  8.77s/it]
yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
real_y = y_train

train_mse_eachnode_estgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_estgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_estgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_estgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()
estgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
estgcn_test = yyhat.squeeze() 

GNAR 으로 적합 + 예측

-

X_gnar = np.array(torch.concat([X[:-1,:,0], x_train[-1,:,:].T]))
Edge = np.array(edge_index)
w=np.zeros((1068,1068))
for k in range(27079):
    w[edge_index[0][k],edge_index[1][k]] = 1
%R -i X_gnar
%R -i w
%R -i T_test
%%R
wikiNet <- matrixtoGNAR(w)
%%R
answer <- GNARfit(vts = X_gnar, net = wikiNet, alphaOrder = 4, betaOrder = c(1,1,1,1))
prediction <- predict(answer,n.ahead=T_test)
%%R
gnar_train <- residuals(answer)
gnar_test <- prediction
%R -o gnar_train
%R -o gnar_test
train_mse_eachnode_gnar = (gnar_train**2).mean(axis=0)
train_mse_total_gnar = (gnar_train**2).mean()
test_mse_eachnode_gnar = ((y_test-gnar_test)**2).mean(axis=0)
test_mse_total_gnar = ((y_test-gnar_test)**2).mean()

결과시각화

fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,h=5)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.set_title('node{0} \n STGCN: mse(train) = {1:.2f}, mse(test) = {2:.2f} \n ESTGCN: mse(train) = {3:.2f}, mse(test) = {4:.2f}\n GNAR: mse(train) = {5:.2f}, mse(test) = {6:.2f}'.format(i,train_mse_eachnode_stgcn[i],test_mse_eachnode_stgcn[i],train_mse_eachnode_estgcn[i],test_mse_eachnode_estgcn[i],train_mse_eachnode_gnar[i],test_mse_eachnode_gnar[i]))
    a.plot(missing_index[i],x_train[missing_index[i],i,0],'xk',label='missing')
    a.plot(interpolated_signal[:,i],'-',color='gray',label='linear interpolation')
    a.plot(range(4,580),stgcn_train.squeeze()[:,i],'--.',label='STCGCN (train)',color='C0')
    a.plot(range(583,728),stgcn_test.squeeze()[:,i],'--.',label='STCGCN (test)',color='C0')
    a.plot(range(4,584),estgcn_train.squeeze()[:,i],label='ESTCGCN (train)',color='C1')
    a.plot(range(582,727),estgcn_test.squeeze()[:,i],label='ESTCGCN (test)',color='C1')
    a.plot(range(4,583),gnar_train.squeeze()[:,i],label='GNAR (train)',color='C2')
    a.plot(range(583,728),gnar_test.squeeze()[:,i],label='GNAR (test)',color='C2')
    
    a.legend()
fig.set_figwidth(14)
fig.suptitle("Scenario2: \n missing=50% \n interpolation=linear \n\n STGCN: mse(train) = {0:.2f}, mse(test) = {1:.2f} \n ESTGCN: mse(train) = {2:.2f}, mse(test) = {3:.2f} \n GNAR: mse(train) = {4:.2f}, mse(test) = {5:.2f} \n".format(train_mse_total_stgcn,test_mse_total_stgcn,train_mse_total_estgcn,test_mse_total_estgcn,train_mse_total_gnar,test_mse_total_gnar),size=15)
fig.tight_layout()
fig

시나리오4

시나리오4

  • missing rate: 30%
  • 보간방법: linear

- 결측치생성 + 보간

_zero = Missing(x_train_f)
_zero.miss(percent = 0.3)
_zero.second_linear()
missing_index = _zero.number
interpolated_signal = _zero.train_linear
fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,h=5)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.plot(missing_index[i],x_train_f[:,i][missing_index[i]],'xk',label='missing')
    a.plot(interpolated_signal[:,i],'-',color='gray',label='linear interpolation')
    a.legend()
fig.set_figwidth(15)
fig

STGCN 으로 적합 + 예측

X = torch.tensor(np.stack([interpolated_signal[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = torch.tensor(interpolated_signal[4:,:]).float()
XX = x_test
yy = y_test
net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
for epoch in tqdm(range(50)):
    for time, (xt,yt) in enumerate(zip(X,y)):
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
100%|██████████| 50/50 [06:32<00:00,  7.86s/it]
yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
real_y = y_train[4:,:]

train_mse_eachnode_stgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_stgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_stgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()
stgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
stgcn_test = yyhat.squeeze() 

ESTGCN 으로 적합 + 예측

X = torch.tensor(np.stack([interpolated_signal[i:(T_train-4+i),:] for i in range(4)],axis = -1)).float()
y = torch.tensor(interpolated_signal[4:,:]).float()
XX = x_test
yy = y_test

- ESTGCN

net = RecurrentGCN(node_features=4, filters=4)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
net.train()
signal = interpolated_signal.copy()
for epoch in tqdm(range(50)):
    signal = update_from_freq_domain(signal,missing_index)
    X = torch.tensor(np.stack([signal[i:(T_train+i),:] for i in range(4)],axis = -1)).reshape(T_train,N,4).float()
    y = torch.tensor(signal).reshape(-1,N,1).float()[4:,:,:]
    for time, (xt,yt) in enumerate(zip(X,y)):        
        yt_hat = net(xt, edge_index, edge_attr)
        cost = torch.mean((yt_hat-yt)**2)
        cost.backward()
        optimizer.step()
        optimizer.zero_grad()
    signal = torch.concat([X[:-1,:,0], X[-1,:,:].T, yt_hat.detach().reshape(1,-1)]).squeeze()
100%|██████████| 50/50 [07:13<00:00,  8.66s/it]
yhat = torch.stack([net(xt, edge_index, edge_attr) for xt in X]).detach().numpy()
yyhat = torch.stack([net(xt, edge_index, edge_attr) for xt in XX]).detach().numpy()
real_y = y_train

train_mse_eachnode_estgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean(axis=0)
train_mse_total_estgcn = (((real_y-yhat.squeeze()).squeeze())**2).mean()
test_mse_eachnode_estgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean(axis=0)
test_mse_total_estgcn = (((yy-yyhat.squeeze()).squeeze())**2).mean()
estgcn_train = yhat.squeeze() # stgcn은 stgcn에 의한 적합결과를 의미함
estgcn_test = yyhat.squeeze() 

GNAR 으로 적합 + 예측

-

X_gnar = np.array(torch.concat([X[:-1,:,0], x_train[-1,:,:].T]))
Edge = np.array(edge_index)
w=np.zeros((1068,1068))
for k in range(27079):
    w[edge_index[0][k],edge_index[1][k]] = 1
%R -i X_gnar
%R -i w
%R -i T_test
%%R
wikiNet <- matrixtoGNAR(w)
%%R
answer <- GNARfit(vts = X_gnar, net = wikiNet, alphaOrder = 4, betaOrder = c(1,1,1,1))
prediction <- predict(answer,n.ahead=T_test)
%%R
gnar_train <- residuals(answer)
gnar_test <- prediction
%R -o gnar_train
%R -o gnar_test
train_mse_eachnode_gnar = (gnar_train**2).mean(axis=0)
train_mse_total_gnar = (gnar_train**2).mean()
test_mse_eachnode_gnar = ((y_test-gnar_test)**2).mean(axis=0)
test_mse_total_gnar = ((y_test-gnar_test)**2).mean()

결과시각화

fig = plot(x_train_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,h=5)
fig = plot_add(fig,x_test_f[:,:5],'--o',color='gray',label='complete data',alpha=0.2,t=range(581,729))
ax = fig.get_axes()
for i,a in enumerate(ax):     
    a.set_title('node{0} \n STGCN: mse(train) = {1:.2f}, mse(test) = {2:.2f} \n ESTGCN: mse(train) = {3:.2f}, mse(test) = {4:.2f}\n GNAR: mse(train) = {5:.2f}, mse(test) = {6:.2f}'.format(i,train_mse_eachnode_stgcn[i],test_mse_eachnode_stgcn[i],train_mse_eachnode_estgcn[i],test_mse_eachnode_estgcn[i],train_mse_eachnode_gnar[i],test_mse_eachnode_gnar[i]))
    a.plot(missing_index[i],x_train[missing_index[i],i,0],'xk',label='missing')
    a.plot(interpolated_signal[:,i],'-',color='gray',label='linear interpolation')
    a.plot(range(4,580),stgcn_train.squeeze()[:,i],'--.',label='STCGCN (train)',color='C0')
    a.plot(range(583,728),stgcn_test.squeeze()[:,i],'--.',label='STCGCN (test)',color='C0')
    a.plot(range(4,584),estgcn_train.squeeze()[:,i],label='ESTCGCN (train)',color='C1')
    a.plot(range(582,727),estgcn_test.squeeze()[:,i],label='ESTCGCN (test)',color='C1')
    a.plot(range(4,583),gnar_train.squeeze()[:,i],label='GNAR (train)',color='C2')
    a.plot(range(583,728),gnar_test.squeeze()[:,i],label='GNAR (test)',color='C2')
    
    a.legend()
fig.set_figwidth(14)
fig.suptitle("Scenario4: \n missing=30% \n interpolation=linear \n\n STGCN: mse(train) = {0:.2f}, mse(test) = {1:.2f} \n ESTGCN: mse(train) = {2:.2f}, mse(test) = {3:.2f} \n GNAR: mse(train) = {4:.2f}, mse(test) = {5:.2f} \n".format(train_mse_total_stgcn,test_mse_total_stgcn,train_mse_total_estgcn,test_mse_total_estgcn,train_mse_total_gnar,test_mse_total_gnar),size=15)
fig.tight_layout()
fig